Dynamic Mechanical Property of Kaolinite/Styrene-Butadiene Rubber Composites

<- Back to I. Materials Science Vol. 8

Cite the paper

Yinmin Zhang, Hongli Song, Qinfu Liu, Shilong Zhang, Yude Zhang (2017). Dynamic Mechanical Property of Kaolinite/Styrene-Butadiene Rubber Composites. Mechanics, Materials Science & Engineering, Vol 8. doi:10.2412/mmse.61.54.732

Authors: Yinmin Zhang, Hongli Song, Qinfu Liu, Shilong Zhang, Yude Zhang

ABSTRACT. The dynamic properties of kaolinite/styrene-butadiene rubber (SBR) composites filled by kaolinite were investigated to evaluate their real-world engineering applications. The results of field emission scanning electron microscopy (SEM), and transmission electron microscopy (TEM) revealed that the rubber chains were confined within the interparticle space of kaolinites, and that the nanoscale kaolinites exhibited a fine and physical dispersion in the SBR matrix. The dyanmic properties of kaolinite/SBR composites were investigated by performing dynamic mechanical analysis (DMA) and rubber processing analysis (RPA). Both the decrease in kaolinite particle size and the increase in kaolinite content can greatly improve the storage modulus and reinforcing effect of kaolinite/SBR composites. A small particle size and a low filled content of kaolinite filler is favorable for the dynamic properties of kaolinite/SBR composites for tire products. The filler networking phenomenon attributed to the agglomeration-de-agglomeration of filler particles intensified as the kaolinite particle size was reduced and the kaolinite content was increased, which resulted from the increase in the unit volume fraction of kaolinite in the rubber matrix and the stronger interaction of kaolinite particles in the composite matrix.

Keywords: kaolinite, styrene-butadiene rubber, microstructure, dynamic mechanical properties

DOI 10.2412/mmse.61.54.732

View in web format Dynamic Mechanical Property of Kaolinite/Styrene-Butadiene Rubber Composites


[1] G. Choudalakis, A.D. Gotsis, Permeability of polymer/clay nanocomposites: A review, European Polymer Journal, 45 (2009) 967-984 doi 10.1016/j.eurpolymj.2009.01.027

[2] S. Sinha Ray, M. Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing, Progress in Polymer Science, 28 (2003) 1539-1641 doi 10.1016/j.progpolymsci.2003.08.002

[3] J.P.G. Villaluenga, M. Khayet, M.A. López-Manchado, J.L. Valentin, B. Seoane, J.I. Mengual, Gas transport properties of polypropylene/clay composite membranes, European Polymer Journal, 43 (2007) 1132-1143 doi 10.1016/j.eurpolymj.2007.01.018

[4] J.W. Gilman, Flammability and thermal stability studies of polymer layered silicate (clay) nanocomposites, Applied Clay Science, 15 (1999) 31-49.

[5] Z.F. Wang, B. Wang, N. Qi, H.F. Zhang, L.Q. Zhang, Influence of fillers on free volume and gas barrier properties in styrene-butadiene rubber studied by positrons, Polymer, 46 (2005) 719-724

[6] Y. Zhang, Q. Liu, Q. Zhang, Y. Lu, Gas barrier properties of natural rubber/kaolin composites prepared by melt blending, Applied Clay Science, 50 (2010) 255-259.

[7] C. Lu, Y.-W. Mai, Permeability modelling of polymer-layered silicate nanocomposites, Composites Science and Technology, 67 (2007) 2895-2902 doi 10.1016/j.compscitech.2007.05.008

[8] Y. Zhang, Q. Liu, S. Zhang, Y. Zhang, H. Cheng, Gas barrier properties and mechanism of kaolin/styrene–butadiene rubber nanocomposites, Applied Clay Science, 111 (2015) 37-43.

[9] A. Zare Shahabadi, A. Shokuhfar, S. Ebrahimi-Nejad, M.T. Arjmand, M, Modeling the stiffness of polymer/layered silicate nanocomposites: More accurate predictions with consideration of exfoliation ratio as a function of filler content, Polymer Testing, 30 (2011) 408-414.

[10] Q. Liu, Y. Zhang, H. Xu, Properties of vulcanized rubber nanocomposites filled with nanokaolin and precipitated silica, Applied Clay Science, 42 (2008) 232-237.

[11] Y. Zhang, Q. Liu, J. Xiang, R.L. Frost, Thermal stability and decomposition kinetics of styrene-butadiene rubber nanocomposites filled with different particle sized kaolinites, Applied Clay Science, 95 (2014) 159-166.

[12] R.L. Fan, Y. Zhang, F. Li, Y. Zhang, K. Sun, Y.Z. Fan, Effect of high-temperature curing on the crosslink structures and dynamic mechanical properties of gum and N330-filled natural rubber vulcanizates, Polymer Testing, 20 (2001) 925-936.

[13] C. Kumnuantip, N. Sombatsompop, Dynamic mechanical properties and swelling behaviour of NR/reclaimed rubber blends, Materials Letters, 57 (2003) 3167-3174.

[14] X. Liu, Y. Gao, L. Bian, Z. Wang, Influence of ultrafine full-vulcanized styrene-butadiene powdered rubber on dynamic mechanical properties of natural rubber/butadiene rubber and styrene-butadiene rubber/butadiene rubber blends, Polymer Bulletin, 72 (2015) 2001-2017.

[15] F.R.S. Benmesli, Dynamic mehcanical and thermal properties of a chemically modified polypropylene/natural rubber thermoplasitic elastomer blend, Polymer Testing, 36 (2014) 54-61.

[16] M. Nematollahi, A. Jalali-Arani, K. Golzar, Organoclay maleated natural rubber nanocomposite. Prediction of abrasion and mechanical properties by artificial neural network and adaptive neuro-fuzzy inference, Applied Clay Science, 97-98 (2014) 187-199.

[17] M. Galimberti, M. Coombs, V. Cipolletti, A. Spatola, G. Guerra, A. Lostritto, L. Giannini, S. Pandini, T. Riccò, Delaminated and intercalated organically modified montmorillonite in poly(1,4-cis-isoprene) matrix. Indications of counterintuitive dynamic-mechanical behavior, Applied Clay Science, 97-98 (2014) 8-16.

[18] A. Malas, P. Pal, S. Giri, A. Mandal, C.K. Das, Synthesis and characterizations of modified expanded graphite/emulsion styrene butadiene rubber nanocomposites: Mechanical, dynamic mechanical and morphological properties, Composites: Part B, 58 (2014) 267-274.

[19] H. Cheng, R.L. Frost, J. Yang, Q. Liu, J. He, Infrared and infrared emission spectroscopic study of typical Chinese kaolinite and halloysite, Spectrochim Acta A Mol Biomol Spectrosc, 77 (2010) 1014-1020.

[20] R.L. Frost, J. Kristof, E. Horvath, J.T. Kloprogge, The Modification of Hydroxyl Surfaces of Formamide-Intercalated Kaolinites Synthesized by Controlled Rate Thermal Analysis, J Colloid Interface Sci, 239 (2001) 126-133.

[21] H. Cheng, Z. Zhang, Q. Liu, J. Leung, A new method for determining platy particle aspect ratio: A kaolinite case study, Applied Clay Science, 97-98 (2014) 125-131.

[22] Z. Gu, G. Song, W. Liu, P. Li, L. Gao, H. Li, X. Hu, Preparation and properties of styrene butadiene rubber/natural rubber/organo-bentonite nanocomposites prepared from latex dispersions, Applied Clay Science, 46 (2009) 241-244.

[23] A. Lagazzo, S. Lenzi, R. Botter, P. Cirillo, F. Demicheli, D.T. Beruto, A rheological method for selecting nano-kaolin powder as filler in SBR rubber, Particuology, 8 (2010) 245-250.

[24] Y. Zhang, Q. Liu, Z. Wu, Q. Zheng, H. Cheng, Thermal behavior analysis of kaolinite–dimethylsulfoxide intercalation complex, Journal of Thermal Analysis and Calorimetry, 110 (2011) 1167-1172.

[25] H. Cheng, Q. Liu, J. Yang, Q. Zhang, R.L. Frost, Thermal behavior and decomposition of kaolinite–potassium acetate intercalation composite, Thermochimica Acta, 503-504 (2010) 16-20.

[26] H. Cheng, S. Zhang, Q. Liu, X. Li, R.L. Frost, The molecular structure of kaolinite–potassium acetate intercalation complexes: A combined experimental and molecular dynamic simulation study, Applied Clay Science, (2015).

[27] Y. Zhang, Research on the dynamic heating built-up and barrier properties of rubber/kaolin composites,  College of Geoscience and Surveying Enginerring, China University of Mining & Technology-Beijing, 2013, pp. 47-49.

[28] S. Prasertsri, N. Rattanasom, Fumed and precipitated silica reinforced natural rubber composites prepared from latex system: Mechanical and dynamic properties, Polymer Testing, 31 (2012) 593-605.

[29] A.R. Payen, Whittaker, P.E, Low strain dynamic properties of filled rubbers, Rubber Chemistry and Technology, 44 (1971) 440-478.

[30] G.A. Bohm, Tomaszewski, W, Cole, W, Hogan, T, Furthering the understanding of the non-linear response of filler reinforced elastomers, Polymer, 51 (2010) 2057-2068.


Creative Commons Licence
Mechanics, Materials Science & Engineering Journal by Magnolithe GmbH is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at www.mmse.xyz.