A Numerical-Analytical Approach to the Analysis of Non-Stationary Temperature Fields in Multiply-Connected Solids

<- Back to II. Mechanical Engineering & Physics Vol.3

Cite the paper

Kushnir, Roman; Solyar, Tetyana

A Numerical-Analytical Approach to the Analysis of Non-Stationary Temperature Fields in Multiply-Connected Solids Journal Article

Mechanics, Materials Science & Engineering, 3 (1), pp. 91-107, 2016, ISSN: 2412-5954.

Abstract | Links | BibTeX

Authors: Roman Kushnir, Tetyana Solyar

ABSTRACT. A technique for the analysis of non-stationary temperature fields in multiply connected solids is presented. This technique rests upon the Laplace integral transformation along with the method of boundary-integral equations. The inversion for the Laplace transformation is performed by making use of the well-known general analytical-numerical Prudnikov’s formula, which has been efficiently adopted for solving non-stationary heat-conduction problems to achieve the solution within the controllable accuracy. On this basis, the temperature fields in solids with openings and multiply-connected plates with heat emission are analyzed.

Keywords: integral Laplace transformation, non-stationary temperature fields, multiply connected solids, plate with heat emission

DOI 10.13140/RG.2.1.1167.0165


[1] C. A. Brebbia, J. Telles, and L. Wrobel, Boundary Element Techniques, Theory and Applications in Engineering., Springer-Verlag, Berlin, NY, 1984.

[2] C. A. Brebbia and S. Walker, Boundary Element Techniques in Engineering, Butterworths, London, Boston, 1980.

[3] V. A. Ditkin and A. P. Pudnikov, Integral Transforms and Operational Calculus, Oxford, New York, 1965.

[4] H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Clarendon Press, Oxford, 1959.

[5] R. M. Kushnir, V. M. Maksymovych, and T. Ya. Solyar, Determination of Nonstationary Temperatures with the Help of Improved Formulas of the Inverse Laplace Transformation, Mater. Sci. , 38, No. 2, 2002, pp. 172-184.

[6] V. M. Maksymovich and T. Ya. Solyar, Refined Formulas for Determination of the Inverse Laplace Transform Using Fourier Series and their Use in Problems of Heat Conduction, J. Eng. Phys. Thermophys., 75, No. 3, 2002, pp. 648-650.

[7] V. M. Maksymovych and T. Ya. Solyar, Method of Mechanical Quadratures for Solving Integral Equations of Thermoelasticity for Plates with Heat Exchange, J. Math. Sci., 174, No. 3, 2011, pp. 387-399.

[8] Ya. S. Pidstryhach and Yu. M. Kolyano, Unsteady Temperature Fields and Stresses in Thin Plates, Naukova Dumka, Kiev, 1972 [in Russian].

[9] G. N. Savin, Stresses Concentration Around Holes, New York, Pergamon Press, 1961.

[10] A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics, Oxford: Pergamon, 1963.

[11] R. G. Campos and F. M. Díaz, Quadrature Formulas for the Laplace and Mellin Transform Analytic-Element Method for Transient Porous-media Flow, BIT Numer. Math., 49, No. 3, 2009, pp. 477-486.

[12] B. Davis and B. Martin, Numerical Inversion of the Laplace Transform: Survey and Comparison of Methods, J. Computat. Physics, 33, No. 1, 1979, pp. 1-32.

[13] K. L. Kuhlman and S. P.Neuman, Laplace-Transform Analytic-Element Method for Transient Porous-Media Flow, J. Eng. Math., 64, No. 2, 2009, pp. 113-130.

[14] M. Bonnet, Equations Integrales et Elements de Frontiere. Applications en Mecanique des Solides et des Fluides, CNRS Editions, Editions Eyrolles, 1995.

[15] M. Levesque, M. D. Gilchris, N. Bouleau, K. Derrien, and D. Baptiste, Numerical Inversion of the Laplace-Carson Transform Applied to Homogenization of Randomly Reinforced Linear Viscoelastic Media, Comput. Mechanics, 40, No. 4, 2007, pp. 771-789.


Creative Commons Licence
Mechanics, Materials Science & Engineering Journal by Magnolithe GmbH is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at www.mmse.xyz.