AC Conductivity Studies of MgCuZn Ferrite

<- Back to I. Materials Science Vol. 13

Read full-text

Cite the paper

W., Madhuri; Reddy, Penchal M; Reddy, Ramamanohar N; Kumar, Siva K V

AC Conductivity Studies of MgCuZn Ferrite Journal Article

Mechanics, Materials Science & Engineering, 13 , 2017, ISSN: 2412-5954.

Abstract | Links | BibTeX

Authors: Madhuri W., M. Penchal Reddy, N. Ramamanohar Reddy, K.V. Siva Kumar

ABSTRACT. Mg0.5-xCuxZn0.5Fe2O4 (x = 0 to 0.3) are synthesized by conventional ceramic double sintering technique. Temperature dependence of AC electrical conductivity is estimated in the temperature range of 30 to 200oC and frequency dependence up to 1MHz. Room temperature conductivity is of the order of 10-8 -1m-1 and increases to 10-5-1m-1 at higher temperatures. Temperature dependence of all the compositions follows Arrhenius law while the frequency dependence follows the double power law. The activation energies and the critical exponents evaluated supports jump relaxation model of conduction mechanism.

Keywords: AC conduction, activation energy, critical exponents, ferrites

DOI 10.2412/mmse.12.48.768

References

[1] Madhuri, W., Reddy, M. P., Kim, I. G., Reddy, N. R. M., Kumar, K. S., Murthy, V. R. K. (2013), Transport properties of microwave sintered pure and glass added MgCuZn ferrites, Materials Science and Engineering: B,178(12), 843-850. DOI 10.1016/j.mseb.2013.03.020.

[2] Reddy, M. P., Balakrishnaiah, G., Madhuri, W., Ramana, M. V., Reddy, N. R., Kumar, K. S., Reddy, R. R. (2010), Structural, magnetic and electrical properties of NiCuZn ferrites prepared by microwave sintering method suitable for MLCI applications, Journal of Physics and Chemistry of Solids,71(9), 1373-1380, DOI 10.1016/j.jpcs.2010.06.007.

[3] Gurusiddappa, J., Madhuri, W., Suvarna, R. P., Dasan, K. P. (2016), Conductivity and dielectric behavior of polyethylene oxide-lithium perchlorate solid polymer electrolyte films, Indian Journal of Advances in Chemical Science, 4(1), 14-19.

[4] Madhuri, W., Reddy, M. P., Reddy, N. R. M., Kumar, K. S. (2014), Thermoelectric Studies of MgCuZn Ferrites, International Journal of ChemTech Research, 6(3), 1771-1774.

[5] Bellad, S. S., Watawe, S. C., Chougule, B. K. (1999), Some AC electrical properties of Li–Mg ferrites, Materials Research Bulletin, 34(7), 1099-1106, DOI 10.1016/S0025-5408(99)00107-5.

[6] Ahmed, M. A., Ateia, E., Salem, F. M. (2006), Spectroscopic and electrical properties of Mg–Ti ferrite doped with different rare-earth elements, Physica B: Condensed Matter, 381(1), 144-155, DOI 10.1016/j.physb.2005.12.265.

[7] Ali, I., Islam, M. U., Ashiq, M. N., Iqbal, M. A., Khan, H. M., Karamat, N. (2013), Effect of Tb–Mn substitution on DC and AC conductivity of Y-type hexagonal ferrite, Journal of Alloys and Compounds,579, 576-582, DOI 10.1016/j.jallcom.2013.06.182.

[8] Madhuri, W., Reddy, M. P., Kim, I. G., Reddy, N. R. M., Kumar, K. S., Murthy, V. R. K. (2013), Transport properties of microwave sintered pure and glass added MgCuZn ferrites, Materials Science and Engineering: B, 178(12), 843-850, DOI 10.1016/j.mseb.2013.03.020.

[9] Funke, K. (1993), Jump relaxation in solid electrolytes, Progress in Solid State Chemistry, 22(2), 111-195, DOI 10.1016/0079-6786(93)90002-9.

[10] Youssef, A. A. (2002), The Permittivity and AC Conductivity of the Layered perovskite [(CH3)(C6H5) 3P] 2HgI4, Zeitschrift für Naturforschung A, 57(5), 263-269, DOI 10.1515/zna-2002-0510.

Creative Commons Licence
Mechanics, Materials Science & Engineering Journal by Magnolithe GmbH is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at www.mmse.xyz.