Application of Quaternionic Matrices for Finite Turns’ Sequence Representation in Space

<- Back to II. Mechanical Engineering & Physics Vol. 9

Cite the paper

Victor Kravets, Tamila Kravets, Olexiy Burov (2017). Application of Quaternionic Matrices for Finite Turns’ Sequence Representation in SpaceMechanics, Materials Science & Engineering, Vol 9. doi:10.2412/mmse.17.56.743

Authors: Victor Kravets, Tamila Kravets, Olexiy Burov

ABSTRACT. With the use of mathematical apparatus of monomial (1,0,-1)-matrices-(4×4), the Rodrigues’ vector formula describing the finite turn, is represented with quaternionic matrices. Two ways to deduct the Rodrigues’ formula in quaternionic matrices are provided: with the use of basic (1,0,-1)-matrices-(4×4), equivalent to the quaternion and conjugate quaternion; the vector and the opposite vector. It is demonstrated that the commutative product of two matrices-(4×4) equivalent to the quaternion, determines the finite turn matrix, and the commutative product of two matrices-(4×4) equivalent to the conjugate quaternion determines the inverse matrix of the finite turn if the Rodrigues-Hamilton parameters are taken as quaternion components. With this use of mathematical induction method, the obtained results are generalized for the cases of arbitrary sequence of finite independent turns in space. The offered formula for representation of finite turns in space with quaternionic matrices is distinguished by its compactness and convenience for both analytic treatments and efficient computational algorithms development.

Keywords: monomial (1,0,-1)-matrices-(4×4), quaternionic matrices, Rodrigues’ formula, parameters of Rodrigues-Hamilton, finite rotation

DOI 10.2412/mmse.17.56.743

References

[1] Lur’e, A.I., Analytical mechanics, Springer Science & Business Media, 2002, 824 p.

[2] Pars, L.A., A Treatise on analytical dynamics, Ox Bow Pr. Publ., 1981, 641 p.

[3] Appell, P., Teoreticheskaya phizika [Traite de mecanique rationnelle], Moscow, Fizmatgiz Publ., Vol. 1, 1960, 515 p., Vol. 2, 1960, 487 p. (in Russian).

[4] Goldstein, H., Classical mechanics, Addison-Wesley Publishing Company, 1980, 672 p.

[5] Raushenbax, B.V., Tokar’, E.N. Upravlenie orientatsiej kosmicheskix apparatov [The orientation of the spacecraft management], Moscow, Nauka Publ., 1974, 600 p. (in Russian).

[6] Ishlinskij, A.Yu. Orientatsiya, giroskopy i inertsial’naya navigatsiya [Orientation, gyroscopes and inertial navigation], Moscow, Nauka Publ., 1976, 672 p. (in Russian).

[7] Branets, V.N., Shmyglevskij, I.P. Primenenie kvaternionov v zadachax orientatsii tverdogo tela [The use of quaternions in problems of solid-state orientation], Moscow, Nauka Publ., 1973, 320 p. (in Russian).

[8] Onischenko, S.M. Primenenie giperkompleksnyx chisel v teorii inertsial’noj navigatsii. Avtonomnye sistemy [The use of hyper complex numbers in the inertial navigation theory. Stand-alone systems], Kyiv, Naukova dumka Publ., 1983, 208 p. (in Russian).

[9] Bellman, R., Introduction to Matrix Analysis, Second Edition, University of Southern California, 1997, 399 p.

[10] Mal’tsev, A.I. Osnovy linejnoj algebry [Fundamentals of linear algebra], Moscow, Nauka Publ., 1970, 400 p. (in Russian).


[11] Elliot, J.P., Dawber, P.G. Symmetry in physics, Vol. 1: Principles and Simple Applications, Oxford University Press, 1985, 302 p., Vol. 2: Further Applications, Oxford University Press, 1985, 298 p.

[12] Berezin, A.V., Kurochkin, Yu.A., Tolkachev, E.A. Kvaterniony v relyativistskoj fizike [Quaternions in relativistic physics], Moscow, Editoreal Publ., 2003, 200 p. (in Russian).

[13] Chelnokov, Yu.N. Kvaternionnye i bikvaternionnye modeli i metody mexaniki tverdogo tela i ix prilozheniya. Geometriya i kinematika dvizheniya [Quaternion and biquaternions models and methods of solid mechanics and their applications. The geometry and kinematics motion], Moscow, Fizmatgiz Publ., 2006, 512 p. (in Russian).

[14] Kravets, V., Kravets, T., Burov, O. Monomial (1, 0, -1)-matrices-(4х4). Part 1. Application to the transfer in space. Lap Lambert Academic Publishing, Omni Scriptum GmbH&Co. KG., 2016, 137 p. ISBN: 978-3-330-01784-9.

[15] Korn, G., Korn, T. Spravochnik po matematike dlya nauchnyh rabotnikov i inzhenerov [Mathematical Handbook for Scientists and Engineers], Moscow, Nauka Publ., 1984, 832 p. (in Russian).

[16] Igdalov, I.M., Kuchma, L.D., Polyakov N.V., Sheptun Yu.D. Raketa kak ob’ekt upravleniya [Rocket as a control object], Dnipro, Art-Press Publ., 2004, 544 p. ISBN: 966-7985-81-4

[17] Victor Kravets, Tamila Kravets, Olexiy Burov (2017). Identities of Vector Algebra as Associative Properties of Multiplicative Compositions of Quaternion MatricesMechanics, Materials Science & Engineering, Vol 8. doi:10.2412/mmse.47.87.900

https://mmse.xyz/Papers/vol-9-2017/part2/ID201704031.pdf

Creative Commons Licence
Mechanics, Materials Science & Engineering Journal by Magnolithe GmbH is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at www.mmse.xyz.