Characterization of Cr Doped CuGaS2 Thin Films Synthesized By Chemical Spray Pyrolysis

<- Back to I. Materials Science Vol. 9 Iss. 2

Cite the paper

N. Ahsan, S. Kalainathan, N. Miyashita, T. Hoshii, Y. Okada (2017). Characterization of Cr Doped CuGaS2 Thin Films Synthesized By Chemical Spray PyrolysisMechanics, Materials Science & Engineering, Vol 9. doi:10.2412/mmse.53.55.304

Authors: N. Ahsan, S. Kalainathan, N. Miyashita, T. Hoshii, Y. Okada

ABSTRACT. Addition of an impurity or intermediate band in a semiconductor can extend its optical functionalities to novel application such as intermediate band solar cells (BSCs). For this purpose, the optical and electronic characterization were performed on Chromium (Cr) doped (1-4%) chalcopyrite CuGaS2 (CGS) thin films synthesized by chemical spray pyrolysis technique on glass substrates. The structural and chemical characterization studied in the past confirmed that the prepared films are in tetragonal chalcopyrite structure with polycrystalline nature [1]. In the present study, electronic transitions studied by photo-modulated reflectance (PR) measurements showed widened bandgaps when Cr was added, and agrees well with our calculation based on density functional theory (DFT). Native defect-related transitions typically observed within the bandgap of the host CGS semiconductor were reduced in the Cr added films. This observation is consistent with photo-luminescence (PL) spectra measured at room temperature. An additional signature of an impurity band emerged in the PR transitions for Cr-added samples. Analysis of spin-resolved density of state calculation suggests that the IB originates from spin-polarized bands.

Keywords: density functional theory, thin films, intermediate band solar cells, spray pyrolysis, CuGaS2

DOI 10.2412/mmse.53.55.304

References

[1] S. Kalainathan, N. Ahsan, T. Hoshii, and Y. Okada, “Tailoring of Intermediate Band in CuGaS2 Thin film via Chromium doping by facile chemical Spray Pyrolysis technique,” Materials Science in Semiconductor Processing, vol. submitted.

[2] Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, et al., “Intermediate band solar cells: Recent progress and future directions,” Applied Physics Reviews, vol. 2, p. 021302, 2015.

[3] A. Luque and A. Martí, “Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels,” Phys. Rev. Lett., vol. 78, pp. 5014-5017, 1997.

[4] A. Martı´, E. Antolı´n, C. R. Stanley, C. D. Farmer, N. Lo´pez, P. Dı´az, et al., “Production of Photocurrent due to Intermediate-to-Conduction-Band Transitions: A Demonstration of a Key Operating Principle of the Intermediate-Band Solar Cell,” Phys. Rev. Lett., vol. 97, p. 247701, 2006.

[5] N. Ahsan, N. Miyashita, M. M. Islam, K. M. Yu, W. Walukiewicz, and Y. Okada, “Two-photon excitation in an intermediate band solar cell structure,” Appl. Phys. Lett., vol. 100, p. 172111, 2012.

[6] N. Ahsan, N. Miyashita, M. M. Islam, K. M. Yu, W. Walukiewicz, and Y. Okada, “Effect of Sb on GaNAs Intermediate Band Solar Cells,” IEEE J. Photovolt., vol. 3, pp. 730-736, 2013.

[7] Y. Okada, T. Morioka, K. Yoshida, R. Oshima, Y. Shoji, T. Inoue, et al., “Increase in photocurrent by optical transitions via intermediate quantum states in direct-doped InAs/GaNAs straincompensated quantum dot solar cell,” Journal of Applied Physics, vol. 109, p. 024301, 2011.

[8] T. Tanaka, K. M. Yu, A. Levander, O. Dubon, L. Reichertz, N. Lopez, et al., “Demonstration of ZnTe1-xOx Intermediate Band Solar Cell,” Jpn. J. Appl. Phys., vol. 50, p. 082304, 2011.

[9] T. Tanaka, M. Miyabara, Y. Nagao, K. Saito, Q. Guo, M. Nishio, et al., “Photogenerated Current By Two-Step Photon Excitation in ZnTeO Intermediate Band Solar Cells with n-ZnO Window
Layer,” IEEE J. Photovolt., vol. 4, p. 196, 2014.

[10] N. Lo´pez, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, “Engineering the Electronic Band Structure for Multiband Solar Cells,” Phys. Rev. Lett., vol. 106, p. 028701, 2011.

[11] R. Oshima, A. Takata, and Y. Okada, “Strain-compensated InAs/GaNAs quantum dots for use in high-efficiency solar cells,” Appl. Phys. Lett., vol. 93, p. 083111, 2008.

[12] J. Wu, D. Shao, Z. Li, M. O. Manasreh, V. P. Kunets, Z. M. Wang, et al., “Intermediate-band material based on GaAs quantum rings for solar cells,” Appl. Phys. Lett., vol. 95, p. 071908, 2009.

[13] W. Walukiewicz, W. Shan, K. M. Yu, J. W. A. III, E. E. Haller, I. Miotkowski, et al., “Interaction of Localized Electronic States with the Conduction Band: Band Anticrossing in II-VI Semiconductor Ternaries,” Phys. Rev. Lett., vol. 85, p. 1552, 2000.

[14] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, I. Miotkowski, et al., “Origin of the large band-gap bowing in highly mismatched semiconductor alloys,” Phys. Rev. B, vol. 67, p. 035207, 2003.

[15] W. Shan, K. M. Yu, W. Walukiewicz, J. Wu, J. W. A. III, and E. E. Haller, “Band anticrossing in dilute nitrides,” J. Phys.: Cond. Mat., vol. 16, p. S3355, 2004.

[16] Y. Dai, M. A. Slocum, Z. Bittner, S. Hellstroem, D. V. Forbes, and S. M. Hubbard, “Optimization in wide-band-gap quantum dot solar cells,” 43rd IEEE Photovoltaic Specialists Conference (PVSC), pp. 0151 – 0154, 2016.

[17] W.-J. Jeong and G.-C. Park, “Structural and electrical properties of CuGaS2 thin films by electron beam evaporation,” Solar Energy Materials & Solar Cells, vol. 75, pp. 93 –100, 2003.

[18] A. Martí, D. F. Marrón, and A. Luque, “Evaluation of the efficiency potential of intermediate band solar cells based on thin-film chalcopyrite materials,” J. Appl. Phys., vol. 103, p. 073706, 2008.

[19] K. Sato and T. Teranishi, “Effect of Delocalization of d-Electrons on the Optical Reflectivity Spectra of CuGa1-xFexS2 and CuAl1-xFexS2 Systems,” Jpn. J. Appl. Phys., vol. 19, pp. 101 – 105, 1980.

[20] P. Palacios, K. Sánchez, J. C. Conesa, J. J. Fernández, and P. Wahnón, “Theoretical modelling of intermediate band solar cell materials based on metal-doped chalcopyrite compounds,” Thin Solid Films, vol. 515, pp. 6280 –6284, 2007.

[21] Y.-J. Zhao and A. Zunger, “Electronic structure and ferromagnetism of Mn-substituted CuAlS2, CuGaS2, CuInS2, CuGaSe2, and CuGaTe2,” Phys. Rev. B, vol. 69, p. 104422, 2004.

[22] P. Palacios, I. Aguilera, P. Wahnón, and J. C. Conesa, “Thermodynamics of the Formation of Tiand Cr-doped CuGaS2 Intermediate-band Photovoltaic Materials,” J. Phys. Chem. C, vol. 112, pp. 9525 – 9529, 2008.

[23] Y. Seminóvski, P. Palacios, and P. Wahnón, “Intermediate band position modulated by Zn addition in Ti doped CuGaS2,” Thin Solid Films, vol. 519, pp. 7517 – 7521, 2011.

[24] J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, et al., “The SIESTA method for ab initio order-N materials simulation,” Journal of Physics: Condensed Matter, vol. 14,
p. 2745, 2002.

[25] D. E. Aspnes, “Third-derivative modulation spectroscopy with low-field electroreflectance,” Surf. Sci., vol. 37, pp. 418–442, 1973.

[26] J. R. Botha, M. S. Branch, P. R. Berndt, A. W. R. Leitch, and J. Weber, “Defect chemistry in CuGaS2 thin films: A photoluminescence study,” Thin Solid Films, vol. 515, pp. 6246-6251, 2007.

[27] G. Massé, “Luminescence of CuGaS2,” J. Appl. Phys., vol. 58, pp. 930 – 935, 1985.

[28] N. Ahsan, N. Miyashita, K. M. Yu, W. Walukiewicz, and Y. Okada, “Improving multiband character of GaNAs,” Submitted

[29] A. H. Romero, M. Cardona, R. K. Kremer, R. Lauck, G. Siegle, C. Hoch, et al., “Electronic and phononic properties of the chalcopyrite CuGaS2,” Phys. Rev. B, vol. 83, p. 195208, 2011.

https://mmse.xyz/Papers/vol-9-2017/part2/ID201703281.pdf

Creative Commons Licence
Mechanics, Materials Science & Engineering Journal by Magnolithe GmbH is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at www.mmse.xyz.