Co-Dopands on Hydroxyapatite in Structural, Morphology And in Antibacterial Activity

<- Back to I. Materials Science Vol. 14

Read full-text

Cite the paper

S. Helen, ; Kumar, Ruban A

Co-Dopands on Hydroxyapatite in Structural, Morphology And in Antibacterial Activity Journal Article

Mechanics, Materials Science & Engineering, 14 , 2018, ISSN: 2412-5954.

Abstract | Links | BibTeX

Authors: S. Helen, A. Ruban Kumar

ABSTRACT. Hydroxyapatite is calcium phosphate mineral substituted with Mg/Zn anion using precipitate method which indicates the changes in structure using X-ray diffraction. The functional groups of the material shows the bonds and morphology were analyzed using Field Emission Scanning Electron Microscopy. The application of ions doped in hydroxyapatite which gives antibacterial activity for improving medical application due to its biocompatibility.

Keywords: calcium phosphate, Mg/Zn chloride, FESEM, precipitate method

DOI 10.2412/mmse.41.32.305


[1] E. Boanini, M. Gazzano, A. Bigi (2010), Ionic substitutions in calcium phosphates synthesized at low temperature, Acta biomaterialia, 6 (6), 1882-1894, DOI: 10.1016/j.actbio.

[2] C. Ning, X. Wang, L. Li, Y. Zhu, M. Li, P. Yu, Y. Zhang (2015), Concentration ranges of anti-bacterial cations for showing the highest antibacterial efficacy but the least cytotoxicity against mammalian cells: implications for a new antibacterial mechanism, Chemical research into xicology, 28 (9), 1815-1822, DOI: 10.1021/acs.chemrestox.5b00258.

[3] C. Lindahl, W. Xia, J. Lausmaa, P. Borchardt, H. Engqvist (2012), Strontium and silicon co-doped apatite coating: preparation and function as vehicles for ion delivery, Journal of Biomaterials and Nanobiotechnology, 3 (03), 335, DOI: 10.4236/jbnb.2012.33031.

[4] I. Uysal, F. Severcan, A. Tezcaner, Z. Evis (2014), Co-doping of hydroxyapatite with zinc and fluoride improves mechanical and biological properties of hydroxyapatite, Progress in Natural Sci-ence: Materials International, 24 (4), 340-349, DOI: 10.1016/j.pnsc.2014.06.004.

[5] O. Kaygili, S. Keser (2015), Sol–gel synthesis and characterization of Sr/Mg, Mg/Zn and Sr/Zn co-doped hydroxyapatites, Materials Letters, 141, 161-164, DOI: 10.1016/j.matlet.2014.11.078.

[6] B. Li, J. Hao, Y. Min, S. Xin, L. Guo, F. He, H. Li (2015), Biological properties of nanostruc-tured Ti incorporated with Ca, P and Ag by electrochemical method, Materials Science and Engi-neering: C, 51, 80-86, DOI: 10.1016/j.msec.2015.02.036.

[7] U. Diebold (2003), Structure and properties of TiO2 surfaces: a brief review, Applied Physics A: Materials Science & Processing, 76(5), 681-687, DOI: 10.1007/s00339-002-2004-5.

[8] A. Fujishima, X. Zhang (2006), Titanium dioxide photocatalysis: present situation and future approaches, ComptesRendusChimie, 9(5), 750-760, DOI: 10.1016/j.crci.2005.02.055.

[9] W. Salem, D.R. Leitner, F.G. Zingl, G. Schratter, R. Prassl, W. Goessler, S. Schild (2015), An-tibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Esche-richia coli, International Journal of Medical Microbiology, 305 (1), 85-95, DOI: 10.1016/j.ijmm.2014.11.005.

[10] O. Kaygili, S. Keser, T. Ates, A.A. Al-Ghamdi, F. Yakuphanoglu (2013), Controlling of die-lectrical and optical properties of hydroxyapatite based bioceramics by Cd content, Powder tech-nology, 245, 1-6, DOI: 10.1016/j.powtec.2013.04.012.

[11] A. Joseph Nathanael, D. Mangalaraj, S.I. Hong, Y. Masuda, Y.H. Rhee, H.W. Kim (2013), Influence of fluorine substitution on the morphology and structure of hydroxyapatite nanocrystals prepared by hydrothermal method, Materials Chemistry and Physics, 137, 967-976, DOI: 10.1016/j.matchemphys.2012.11.010.

[12] Y. Qi, J. Shen, Q. Jiang, B. Jin, J. Chen, X. Zhang (2015), The morphology control of hydrox-yapatite microsphere at high pH values by hydrothermal method, Advanced Powder Technology, 26(4), 1041-1046, DOI: 10.1016/j.apt.2015.04.008.

[13] V.S. Chandra, K. Elayaraja, K.T. Arul, S. Ferraris, S. Spriano, M. Ferraris, S.N. Kalkura (2015), Synthesis of magnetic hydroxyapatite by hydrothermal–microwave technique: Dielectric, protein adsorption, blood compatibility and drug release studies, Ceramics International, 41(10), (2015), 13153-13163, DOI: 10.1016/j.ceramint.2015.07.088.

[14] A.Z. Alshemary, M. Akram, Y.F. Goh, M.R.A. Kadir, A. Abdolahi, R. Hussain (2015), Struc-tural characterization, optical properties and in vitro bioactivity of mesoporous erbium-doped hy-droxyapatite. Journal of Alloys and Compounds, 645, 478-486, DOI: 10.1016/j.jallcom.2015.05.064.

[15] D. Gopia, E. Shinyjoya, L. Kav (2015), Influence of ionic substitution in improving the biolog-ical property of carbon nanotubes reinforced hydroxyapatite composite coating on titanium for or-thopedicapplications, CeramicsInternational, 41, 5454–5463, DOI: 10.1016/j.ceramint.2014.12.114.

[16] G.S. Kumar, A. Thamizhavel, Y.Yokogawa, S.N. Kalkura, E.K. Girija (2012), Synthesis, characterization and in vitro studies of zinc and carbonate co-substituted nano-hydroxyapatite for biomedical applications, Materials Chemistry and Physics, 134(2), 1127-1135, DOI: 10.1016/j.matchemphys.2012.04.005.

[17] M. Šupová (2015), Substituted hydroxyapatite for biomedical applications: a review, Ceramics international, 41(8), 9203-9231, DOI: 10.1016/j.ceramint.2015.03.316

[18] Y. Tang, H.F. Chappell, M.T. Dove, R.J. Reeder, Y.J. Lee (2009), Zinc incorporation into hy-droxyapatite. Biomaterials, 30(15), 2864-2872, DOI: 10.1016/j.biomaterials.2009.01.043.

Creative Commons Licence
Mechanics, Materials Science & Engineering Journal by Magnolithe GmbH is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at