Comparative Study of API 5L X60 and ASTM 572 Gr50 Steel Exposed to Crude Oil and Seawater

<- Back to I. Materials Science Vol. 15

Read full-text

Cite the paper

Márquez, Marcy Viviana Chiquillo; Cirino, Janaína André; Vieira, Magda Rosangela Santos; Filho, Severino Leopoldino Urtiga

Comparative Study of API 5L X60 and ASTM 572 Gr50 Steel Exposed to Crude Oil and Seawater Journal Article

Mechanics, Materials Science & Engineering, 15 (1), 2018, ISSN: 2412-5954.

Abstract | Links | BibTeX

Authors: Marcy Viviana Chiquillo Márquez, Janaína André Cirino, Magda Rosangela Santos Vieira, Severino Leopoldino Urtiga Filho

ABSTRACT. In the petroleum industry, the biphasic conditions in storage and separation tanks allow that the material to remain exposed to two different environments, causing its deterioration. In this article, an evaluation is made of the corrosive behavior and Vickers microhardness (HV) of two high strength low alloy (HSLA) steels and how their surfaces are characterized. The ASTM 572 Gr50 steel showed a lower corrosion rate in all systems after being immersed for 720 and 1440 hours. Characterizing the surface by means of Scanning Electron Microscopy (SEM) showed uniform and localized corrosion for the both steels, and revealed that the ASTM 572 Gr50 steel shows pitting corrosion in crude oil systems. The electrochemical results revealed that the corrosion potential of API X60 steel was more negative; however the ASTM 572 Gr50 steel had a higher current density and a lower polarization resistance when immersed in an oil/seawater mixture. It also observed that, after being immersed in the corrosive fluids, the microstructures of the steels were not modified and variations in their microhardness (HV) were minute.

Keywords: HSLA, corrosion, crude oil, seawater, microhardness

DOI 10.2412/mmse.5.45.904

References

[1] E. M. Sherif, Molecules. 2014, 9962.

[2] R. E. Melchers, R. J. Jeffrey, Proceedings of the Institution of Civil Engineers. 2015, 167, 159.

[3] W. Liu, Q. Zhou, L. Li, Z. Wu, F. Cao, Z. Gao, Journal of Alloys and Compounds. 2014, 598, 198.

[4] Y. Zhou, J. Chen, Y. Xu, Z. Liu, Journal of Materials Science & Technology. 2013, 29, 168.

[5]  Y. S. Choi, Y. G. Kim, Corrosion. 2000, 1202.

[6] E. C. Bain, H. W. Paxton, Alloying Elements in Steels, ASM, Cleveland, Ohio, USA, 1939.

[7] G. A. Zhang, Y. F. Cheng, Corrosion Science. 2009, 901.

[8] J. C. Ferreira, L. F. Guimarães, E. S. Marouco, O. Ribeiro, Welding and Inspection. 2015, 20, 347.

[9] F. F. Elian, E. Mahdi, Z. Farhat, A. Alfantazi, Electrochemical Science. 2013, 3026.

[10] M. R. Vieira, Ph.D. Thesis, University Federal of Pernambuco, Brasil, 2013.

[11] M. R. Vieira, MSc. Thesis, University Federal of Pernambuco, Brasil, 2008.

[12] V. Panaite, V. Musat, F. Potecasu, C. Gheorghies, Metalurgy. 2011, 63, 13.

[13] E. Dantas, Geração de vapor e água de refrigeração, Ecolab, Brasil, Rio de Janeiro, 1988.

[14] M. M. Stack, G. H. Abdulrahman, Wear, 2012, 274.

[15] H. Q. Becerra, C. Rematoso, D. D. Macdonald, Corrosion Science. 2000, 561.

[16] S. Belkaid, M. A. Ladjouzi, S. Hamdani, Journal Solid State Electrochemical, 2011, 15, 525.

[17] R. O. Rihan, Material Research. 2013, 16, 227 .

[18] A. Rauf, E. Mahdi, International Journal of Electrochemical Science. 2012, 7, 5692.

[19] V. Gentil, Corrosion. Livros Técnicos e Científicos editora S.A, Rio de Janeiro , Brasil, 2011.

[20] H. A. Videla, Biocorrosão, biofouling e biodeterioração de materiais, Edgard Blucher Ltda, São Paulo , Brasil, 2003.

[21] N. C. Barros, MSc. Thesis, University Federal of Rio de Janeiro, Brasil, 2015.

[22] P. R. Mei, A. L. Silva, Aços e Ligas Especiais,  Edgard Blucher, São Paulo, 2008.

[23] H. Colpaert, Metalografia dos Produtos Siderúrgicos Comuns,Blucher, São Paulo 2008.

[24] L. B. Bramfitt, Metals Handbook Desk Edition, J.R. Davis, Bethlehem, 1998.

[25] R. Kuziak, T. Bold, Yi-Wen Cheng, Journal of Materials Processing Technology, 1995, 53, 255.

[26] R. L. Miller, Metallurgical Transactions. 1972, 3,  905.

[27] K. Muszka, J. Majta, L. Bieinias, Metallurgy and Foundry Engineering. 2006, 32, 87.

[28] D. Clover, B. Kinsella, B. Pejcic, R. de Marco, Journal of Applied Electrochemistry. 2005, 35, 139.

[29] L. Zhang, A. Ma, J. Jiang, X. Jie, Materials and Desing. 2015, 65, 115.

[30] M. A. Calle, I. F. Machado, Presented at the ABCM Congress, Uberlandia, Brasil, 18 May – 21 May, 2003. pp. 1-10.

[31] E. M. Sherif, A. A. Almajid, K. A. Khalil, H. Junaedi, F. H. Latief. International Journal of Electrochemical Science. 2013, 8, 9360.

[32] W. Liu, H. Zhang, Z. Qu, Y. Zhang, J. Li, Journal Solid State Electrochemical. 2010, 14, 965.

[33] S. Choudhary, A. Garg, K. Mondal, Journal of Materials Engineering and Performance. 2016, 25, 2969.

[34] O. I. Sekunowo, S. O. Adeosun, G. I. Lawal, International Journal of Scientific & Technology Research. 2013, 2, 139.

[35] L. P. Nunes, Fundamentos de Resistência à Corrosão, Interciência Ltda, Rio do Janeiro, Brasil, 2007.

[36] Y. Liu, B. Zhang, Y. Zhang, L. Ma, P. Yang, Engineering Failure Analysis. 2016, 60, 307.

Creative Commons Licence
Mechanics, Materials Science & Engineering Journal by Magnolithe GmbH is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at www.mmse.xyz.