Deposition and Characterisation of Zinc Telluride as a Back Surface Field Layer in Photovoltaic Applications

<- Back to I. Materials Science Vol. 9 Iss. 2

Cite the paper

Srimathy N., A. Ruban Kumar (2017). Deposition and Characterisation of Zinc Telluride as a Back Surface Field Layer in Photovoltaic ApplicationsMechanics, Materials Science & Engineering, Vol 9. doi:10.2412/mmse.32.15.18

Authors: Srimathy N., A. Ruban Kumar

ABSTRACT. Zinc Telluride films developed by Thermal evaporation technique has wide application in photovoltaic and optoelectronic applications. ZnTe films at 423K and 473K were deposited onto glass substrates and annealed at 573K. Structural studies were carried out by  XRD technique and Morphological study was done by AFM which in turn shows the high intensity peak at annealed condition. Optical properties was studied by UV-VIS spectrometer to find the energy distribution and thereby, bandgap is calculated, which ranges from 1.89eV to 2.42eV. Raman analysis was done to find the phonon distribution and molecular longitudinal modes.

Keywords: thermal evaporation, XRD, AFM, Raman spectroscopy, cubic structure

DOI 10.2412/mmse.32.15.18

References

[1]  Nazar Abbas Shah, Waqar Mahmood, Thin solid Films, “Physical properties of sublimated zinc telluride thin films for solar cell applications”. DOI: 10.1016/j.tsf.2013.03.088

[2] T. L. Chu, Shirley S. Chu, F. Firszt, and Chuck Herrington, Journal of Applied Physics, “Deposition and properties of zinc telluride and cadmium zinc telluride films”. DOI: http://dx.doi.org/10.1063/1.336514

[3] Michael Neumann-Spallart, Christian Kiinigstein , Thin Solid Films, “Electrodeposition of zinc telluride”. DOI: http://dx.doi.org/10.1016/0040-6090(95)06641-1

[4] M. Rusu, I. Salaoru, M. E. Popa, G. I. Rusu, Intern.J. Mod. Phys. B18, 1287 (2004). DOI:10.1.1.518.6368…

[5] B. D. Cullity, Elements of X-ray Diffraction, Addison-Wesley, Reading, Massachusetts 356, (1979).

[6] H. Venghaus, P.J.Dean, Phy.Rev.B, “Shallow-acceptor, donor, free-exciton, and bound-exciton states in high-purity zinc telluride” DOI:https://doi.org/10.1103/PhysRevB.21.1596

[7] M. R. H. Khan, J. Phys D Appl. Phys. 27, 2190 (1994). DOI: 10.1088/0256-307X/24/10/072

[8] W. I. Tao, M. Jurkovic, I. N. Wang, Appl. Phys. Lett. 64, 1848 (1994). DOI: http://dx.doi.org/10.1063/1.126297

[9] P. E. Y. Flewitt, R. K. Wild, Physical Methods for Material Characterization, IOP Publishing Ltd, London, 1994. doi:10.1016/j.physb.2011.02.072

[10] R. Swanepoel, J. Phys. E Sci. Instrum. 16, 121(1983); 17, 896 (1984).DOI:  http://dx.doi.org/10.1063/1.4903320

[11] J. C. Manifacier, J. Gasiot, J. P. Fillard, L. Vicario,Thin Solid Films 41, 127 (1977); 37, 329 (2002) DOI: 10.1.1.518.6368&rep=rep1&type=pdf

[12] A. Kaneta, S. Adachi, J. Phys. D: Appl. Phys. 33 (2000) 901. DOI: 10.1143/JJAP.31.3907/meta

[13] A. Pistone, A.S. Arico, P.L. Antonucci, D. Silvestro, V. Antonucci, Solar Energy Mater. Solar Cells 53 (1998) 255. DOI: 10.5772/50964

[14] M.A. Bozzini, M.A. Baker, P.L. Cavallotti, E. Cerri, C. Lenardi, Thin Solid Films 361y362 (2000) 388. DOI: http://dx.doi.org/10.1016/S0040-6090(99)00771-3

[15] A.S. Arico, D. Silvestro, P.L. Antonucci, N. Giordano, V. Antonucci, Adv. Perform. Mater. 4 (1997) 115. DOI: 10.4028/www.scientific.net/AMM.535.688

[16] A. Mondal, B.E. McCandless, R.W. Birkmire, Solar Energy Mater. Solar Cells 26 (1992) 181. DOI: http://dx.doi.org/10.1016/0927-0248(92)90059-X

[17] B.D. Cullity, Elements of X-ray diffraction, 2nd ed., Addition–Wesley Publishing Inc, 1967, p. 356.

[18] U. Pal, S. Saha, A.K. Chaudhuri, V.V. Rao, H.D. Banerjee, J. Phys. D: Appl. Phys. 22 (1989) 965. DOI: 10.1088/0022-3727/22/7/014/meta

https://mmse.xyz/Papers/vol-9-2017/part2/ID201703282.pdf

Creative Commons Licence
Mechanics, Materials Science & Engineering Journal by Magnolithe GmbH is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at www.mmse.xyz.