Effect of Precursor Concentration of MgO nanostructure by using Sol-Gel Method

<- Back to I. Materials Science Vol.10

Cite the paper

V.T. Srisuvetha, S.L. Rayar, G. shanthi, A. Dhayal Raj, S. Karthikeyan (2017). Effect of Precursor Concentration of MgO nanostructure by using Sol-Gel MethodMechanics, Materials Science & Engineering, Vol 10. doi:10.2412/mmse.76.30.166

Authors: V.T. Srisuvetha, S.L. Rayar, G. shanthi, A. Dhayal Raj, S. Karthikeyan

ABSTRACT. MgO thin flims have been prepared on substrates by a novel and simple sol-gel method using magnesium nitrate and collusion as starting material.The MgO nano catalyst with good sensor crystallization were obtained after annealing at 100°C Magnesium oxide was prepared by sol-gel method. The method involves the hydrolysis of magnesium alkoxide in the presence of acid or basic catalysts followed by a Oxalic acid reaction. The synthesized solids were characterized by IR spectroscopy X-ray diffraction electron microscopy. Ultraviolet visible absorbance measurement photoluminescence and Raman scattering spectra. X-ray diffraction (XRD) characterization showed the formation of smaller particles after sol gel irradiation the structure and morphology of the MgO particles were analyzed byXRD. These articles were used for FTIR spectroscopic measurement and spectra were collected. In EDS we calculated the peak intensity the SEM the images of metal oxide.UV (Ultra Violet) refers to adsorption spectroscopy optical properties of assorption, band gap energy.This means if use light in the visible and adjacent ranges.

Keywords: magnesium oxide, sol-gel method, oxalic acid, XRD, SEM, UV, FTIR, EDS

DOI 10.2412/mmse.76.30.166

References

[1] R. H. Kim, Y. H. Kim, J. W. Park, Improvement of secondary electron emission property of MgO protective layer foran alternating current plasma display panel by addition of TiO2[J]. Thin Solid Films, 2000, 376:183-187

[2] Cline, C.F. and Newkirk, H.W.: ‘Electrical transport processes in BeO, /. Chem. Phys., 1968, 49, pp. 3496-3504

[3] Kitazawa, K. and COBLE, R.L.: ‘Electrical conduction in A1, O3 at high temperatures’, Am. Ceram. Soc, 1974, 57, p p 245-250

[4] Tummala Rao. R., Ceramic and Glass-Ceramic Packaging in the 1990s, J. Am. Ceram. Sot, 74 (1991) 895-908, DOI 10.1111/j.1151-2916.1991.tb04320.x

[5] Rabinovich, E. M., J. Electron. Package, 3 (1989) 183-190.

[6] V.-A. Truong, N. Abatzoglou, A H2S reactive adsorption process for the purification of biogas prior to its use as a bioenergy vector, Biomass Bioenergy 29 (2) (2005) 142–151.

[7] E.-K. Lee, K.-D. Jung, O.-S. Joo, Y.-G. Shul, Influence of iron precursors on catalytic wet oxidation of H2S to sulfur over Fe/MgO catalysts, J. Mol. Catal. A: Chem. 239 (1–2) (2005) 64–67.

[8] M. Fortuny, J.A. Baeza, X. Gamisans, C. Casas, J. Lafuente, M.A. Deshusses, D.Gabriel, Biological sweetening of energy gases mimics in biotrickling filters, Chemosphere 71 (1) (2008) 10–17.

[9] D. Gabriel, H.H.J. Cox, M.A. Deshusses, Conversion of full-scale wet scrubbers to biotrickling filters for H2S control at publicly owned treatment works, J. Environ. Eng. -ASCE 130 (10) (2004) 1110–1117.

[10] H.J. Wubs, A.A.C.M. Beenackers, Kinetics of the oxidation of ferrous chelates of EDTA and HEDTA in aqueous solution, Ind. Eng. Chem. Res. 32 (1993) 2580–2594.

[11] K. Chidambaram, L.K. Malohotra, K.L. Chopra, Spray-pyrolysed cobalt black as a high temperature selective absorber, Thin Solid Films 87 (1982) 365-371, DOI 10.1016/0040-6090(82)90289-9

[12] Kk.J. Cathro, Preparation of cobalt-oxide-based selective surfaces by a dip-coating process , Sol. Energy Mater. 9 (1984) 433-447, DOI 10.1016/0165-1633(84)90017-0

[13] A.J. Vaarkey, A.F. Fort, Sol. Energy Mater. Sol. Cells 31 (1998) 247.

[14] A.U. Mane, K. Shalini, A. Wohlfart, A. Devi, S.A. Shivashankar, J. Crystal Growth 240 (2002) 157.

[15] B. Pejova, A. Isahi, M. Najdoski, I. Grozdanov, Mate. Res. Bull. 36 (2001) 161.

[16] R.C. Mehrota, R. Bohra, D.P. Gaur, Metal b-diketonates and Allied Derivatives, Academic Press, London, 1979.

[17] R.W. Schwartz, Chemical Solution Deposition of Perovskite Thin Films, Chem. Mater. Vol. 9 (1997), 2325-2340, DOI 10.1021/cm970286f

[18] L.D. Landau, B.G. Levich, L.D. Landau, B.G. Levich, Acta Physiocem. U.R.S.S. 17 (1942) 42, Acta Physiocem. USSR 17 (1942) 42.

[19] J. Livage, M. Henry, C. Sancheze, Sol-gel chemistry of transition metal oxides, Proc. Solid State. Chem.18 (1988) 259-341, DOI 10.1016/0079-6786(88)90005-2

[20] B. Bassavalingu, J.A.K. Tareen, G.T. Bhandage, J. Mater.Sci. Lett. 5 (1986) 1227.

[21] D. Mehandjiev, E. Nikalova-Zheeheva, Thermochim. Acta 37 (1980) 45.

[22] S. Gorer, G. Hodes, Quantum size effects in the study of chemical solution deposition mechanisms of semiconductor films, J. Phys. Chem. 98 (1994) 5338-5346, DOI 10.1021/j100071a026

Creative Commons Licence
Mechanics, Materials Science & Engineering Journal by Magnolithe GmbH is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at www.mmse.xyz.