Effect of Textures on Tensile Properties of Extruded Ti64/VGCF Composite by Powder Metallurgy Route

<- Back to I. Materials Science Vol. 5

Cite the paper

Patchara Pripanapong, Shu-feng Li, Junko Umeda & Katsuyoshi Kondoh (2016). Effect of Textures on Tensile Properties of Extruded Ti64/VGCF Composite by Powder Metallurgy Route. Mechanics, Materials Science & Engineering, Vol 5. doi:10.13140/RG.2.1.1120.1525

Authors: Patchara Pripanapong, Shu-feng Li, Junko Umeda, Katsuyoshi Kondoh

ABSTRACT. Monolithic Ti-6Al-4V and Ti-6Al-4V composited with vapor grown carbon fibers (VGCFs) were fabricated by powder metallurgy (P/M) route in this research. Spark plasma sintering (SPS) subsequent by hot extrusion was applied in order to fabricate a full-density and high strength composite materials. A severe plastic deformation during hot extrusion resulted in a dynamic recrystallization (DRX) in α-Ti grains. Dynamic recrystallization was observed in a low deformation temperature region, which yield point of material was also observed in the stress-strain curve. Furthermore, the addition of VGCFs encouraged the dynamic recrystallization during hot extrusion. Ti64+0.4 wt-% VGCFs shows the highest tensile strength of 1192 MPa at the end part of the extruded rod where the temperature of material was lower compared to the tip and middle part during extrusion. Additionally, the improvement in tensile strength was contributed by solid-solution strengthening of carbon element originated from VGCFs in α-Ti matrix.

Keywords: Ti-6Al-4V, VGCFs, composite materials, hot extrusion, dynamic recrystallization

DOI 10.13140/RG.2.1.1120.1525


[1] L.G. Zhen and L.R. Ze, Non-aerospace application of Ti materials with a great many social and economic benefits in China, Mater. Sci. Eng. A, 2000, 280, 25-29, DOI: 10.1016/S0921-5093(99)00651-6.

[2] D. Mareci, R. Cheraliu, D.M. Gordin and T. Gloriant, Comparative corrosion study of Ti-Ta alloys for dental applications, Acta Biomater., 2009, 5, 3625-3639, DOI: 10.1016/j.actbio.2009.05.037.

[3] A. Momeni and S.M. Abbasi, Effect of hot working on flow behaviour of Ti-6Al-4V alloy in single phase and two phase regions, Mater. Des., 2010, 31, 3599-3604, DOI: 10.1016/j.matdes.2010.01.060.

[4] T. Seshacharyulu, S.C. Medeiros, W.G. Frazier and Y.V.R.K. Prasad, Hot working of commercial Ti-6Al-4V with an equiaxed α-β microstructure: materials modeling considerations, Mater. Sci. Eng. A, 2000, 284, 184-194, DOI: 10.1016/S0921-5093(00)00741-3.

[5] R. Ding, Z.X. Guo and A. Wilson, Microstructural evolution of a Ti-6Al-4V alloy during thermomechanical processing, Mater. Sci. Eng. A, 2002, 327, 233-245, DOI: 10.1016/S0921-5093(01)01531-3.

[6] G.Z. Quan, G.C. Lua, J.T. Liang, D.S. Wu, A. Mao and Q. Liu, Modelling for the dynamic recrystallization evolution of Ti-6Al-4V alloy in two-phase temperature range and a wide strain rate range, Comput. Mater. Sci., 2015, 97, 136-147, DOI: 10.1016/j.commatsci.2014.10.009.

[7] H.Z. Niu, Y.F. Chen, Y.S. Zhang, J.W. Lu, W. Zhang and P.X. Zhang, Phase transformation and dynamic recrystallization behaviour of a β-solidifying γ-TiAl alloy and its wrought microstructure control, Mater. Des., 2016, 90, 196-203, DOI: 10.1016/j.matdes.2015.10.133.

[8] D.L. Ouyang, M.W. Fu and S.Q. Lu, Study on the dynamic recrystallization behaviour of Ti-alloy Ti-10V-2Fe-3V in β processing via experiment and simulation, Mater. Sci. Eng. A, 2014, 619, 26-34, DOI: 10.1016/j.msea.2014.09.067.

[9] H. Liang, H. Guo, Y. Ning, X. Peng, C. Qin, Z. Shi and Y. Nan, Dynamic recrystallization behaviour of Ti-5Al-5Mo-5V-1Cr-1Fe alloy, Mater. Des., 2014, 63, 798-804, DOI: 10.1016/j.matdes.2014.06.064.

[10] C.H. Park, J.H. Kim, J.T. Yeom, C.S. Oh, S.L. Semiatin and C.S. Lee, Formation of a submicrocrystalline structure in a two-phase titanium alloy without severe plastic deformation, Scr. Mater., 2013, 68, 996-999, DOI: 10.1016/j.scriptamat.2013.02.055.

[11] Y.Q. Ning, X. Luo, H.Q. Liang, H.Z. Guo, J.L. Zhang and K. Tan, Competition between dynamic recovery and recrystallization during hot deformation for TC18 titanium alloy, Mater. Sci. Eng. A, 2015, 635, 77-85, DOI: 10.1016/j.msea.2015.03.071.

[12] Y. Chen, J. Li, B. Tang, H. Kou, X. Xue and Y. Cui, Texture evolution and dynamic recrystallization in a beta titanium alloy during hot-rolling process, J Alloys Compd., 2015, 618, 146-152, DOI: 10.1016/j.jallcom.2014.08.129.

[13] G.C. Obasi, OM. Ferri, T. Ebel and R. Bormann, Influence of processing parameters on mechanical properties of Ti-6Al-4V alloy fabricated by MIM, Mater. Sci. Eng. A, 2010, 527, 3929-3935, DOI: 10.1016/j.msea.2010.02.070.

[14] G.G. Yapici, I. Karaman, Z.P. Luo and H. Rack, Microstructure and mechanical properties of severely deformed powder processed Ti-6Al-4V using equal channel angular extrusion, Scr. Mater., 2003, 49, 1021-1027, DOI: 10.1016/S1359-6462(03)00484-6.

[15] S. Roy, S. Suwas, S. Tamirisakandala, R. Srinivasan and D.B. Miracle, Microstructure and texture evolution during extrusion of boron modified Ti-6Al-4V alloy, Mater. Sci. Eng. A, 2012, 540, 152-163, DOI: 10.1016/j.msea.2012.01.120.

[16] J.D. Verhoeven, Fundamentals of Physical Metallurgy, 1st edn, 55-74; 1975, Canada, John Wiley and sons, Inc, ISBN: 978-0-471-90616-2.

[17] I. Sen, R.S. Kottada and U. Ramamurty, High temperature deformation processing maps for boron modified Ti-6Al-4V alloys, Mater. Sci. Eng. A, 2010, 527, 6157-6165, DOI: 10.1016/j.msea.2010.06.044.

[18] H. Matsumoto, M. Kitamura, Y Li, Y. Koizumi and A. Chiba, Hot forging characteristic of Ti-5Al-5V-5Mo-3Cr alloy with single metastable β microstructure, Mater. Sci. Eng. A, 2014, 611, 337-344, DOI: 10.1016/j.msea.2014.06.006.

[19] A. Lucci, G. Riontino, M.C. Tabasso, M. Tamanini and G. Venturello, Recrystallization and stored energy of dilute copper solid solutions with substitutional transition elements of the 4th period, Acta Metall., 1978, 26, 615-622, DOI: 10.1016/0001-6160(78)90113-X.

[20] F. Pedix, M.-F. Trichet, J.-L. Bonnentian, M. Cornet and J. Bigot, Relationships between interstitial content, microstructure and mechanical properties in fully lamellar Ti-48Al alloys, with special reference to carbon, Intermetallics, 2010, 9, 807-815, DOI: 10.1016/S0966-9795(01)00066-8.


Creative Commons Licence
Mechanics, Materials Science & Engineering Journal by Magnolithe GmbH is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at www.mmse.xyz.