<- Back to II. Mechanical Engineering & Physics Vol. 19

Read full-text

Cite the paper

Maslov, S A; Natyaganov, V L


Mechanics, Materials Science & Engineering, 19 , 2019, ISSN: 2412-5954.

Abstract | Links | BibTeX

Authors: S.A. Maslov, V.L. Natyaganov

ABSTRACT. Basing on the electrohydrodynamic equations system, the article researches influence of parent thundercloud charge distribution, atmospheric electric field perturbations and giant dielectric permittivity effect on the process of forming tornadoes and downbursts. The authors first suggested formula describing the transformation of dipole thundercloud charge structure to tripole one. The paper represents electrohydrodynamic model of forming downburst from the dipole cloud and considers the role of tripole thundercloud charge structure in the process of tornado funnel formation and appearing number of accompanying phenomena.

Keywords: atmospheric electric field, thundercloud, dipole and tripole electric structure, downburst, tornado, electrohydrodynamics, electrohydrodynamic pressure

DOI 10.2412/mmse.64.85.130


[1] B. Vonnegut, Electrical Theory of Tornadoes, J. Geophys. Res., 1960, 65(1), 203-212. DOI: 10.1029/JZ065i001p00203.

[2] D.V. Nalivkin, Hurricanes, Storms and Tornadoes. Geographical Features and Geological Activity, Nauka, 1969.

[3] L. Bengtsson, J. Lighthill (eds), Intense Atmospheric Vortices, Springer-Verlag, 1982.

[4] E.V. Shcherbinin (ed), Electro-Vortex Flow, Zinatne, 1985.

[5] V.L. Natyaganov, S.A. Maslov, Electromagnetic Mechanisms of Forming a Tornado-Like Whirlwind, Moscow University Mechanics Bulletin, 2014, 69(2), 29-34. DOI: 10.3103/S0027133014020010.

[6] S.A. Maslov, Electric Mechanisms of Vorticity Amplification in the Funnel of a Tornado, Moscow University Mechanics Bulletin, 2015, 70(6), 149-152. DOI: 10.3103/S0027133015060035.

[7] S.A. Maslov, Effect of the Atmospheric Electric Field under a Thundercloud on Tornado Funnel Formation, Moscow University Mechanics Bulletin, 2017, 72(1), 23-27. DOI: 10.3103/S0027133017010058.

[8] Ya.I. Frenkel, The Theory of Atmospheric Electricity Phenomena, GITTL, 1949.

[9] R. Feynman, R. Leighton R, M. Sands, The Feynman Lectures on Physics (Mainly Electromagnetism and Matter, Vol. 2), Addison-Wesley, 1964.

[10] T.T. Fujita, Tornadoes and Downbursts in the Context of Generalized Planetary Scales, J. Atmos. Sci., 1981, 38(8), 1511-1534. DOI: 10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2.

[11] T.T. Fujita, Downbursts: Meteorological Features and Wind Field Characteristics, J. Wind. Eng. Ind. Aerodyn., 1990, 36(1), 75-86. DOI: 10.1016/0167-6105(90)90294-M.

[12] V.M. Gendugov, V.L. Natyaganov, A.A. Chaika, Oblique Impact of a Cylindrical Jet on a Plane, Doklady Physics, 2010, 55(8), 405-408. DOI: 10.1134/S1028335810080094.

[13] S.A. Maslov, V.L. Natyaganov, Influence of an Electric Thundercloud Structure on Forming the Tornado-Like Vortices, Prikladnaya Fizika, 2015, 6, 16-20.

[14] E.R. Williams, The Tripole Structure of Thunderstorms, J. Geophys. Res. D, 1989, 94(11), 13151-13167. DOI: 10.1029/JD094iD11p13151.

[15] V.A. Saranin, Equilibrium Stability, Charging, Convection and Interaction of Liquids in Electric Fields, Regulyarnaya i Khaoticheskaya Dinamika, 2009.

[16] V.L. Natyaganov, Conventionality of the Boundaries of EHD and MHD Approximations in Some Problems of Electromagnetic Hydrodynamics, Modern Problems of Electrophysics and Electrodynamics of Fluids, Proceedings IX International Conference 2009, Saint-Petersburg, Russia, June 22 – 26, 2009, 131-134.

[17] T.S. Lundgren, J. Yao, N.N. Mansour, Microburst Modeling and Scaling, J. Fluid Mech. 1992, 239, 461-488. DOI: 10.1017/S002211209200449X.

[18] A. Alahyari, E.K. Longmire, Dynamics of Experimentally Simulated Microburst, J. AIAA, 1995, 33(11), 2128-2136. DOI: 10.2514/3.12957.

[19] F.H. Proctor, Numerical Simulations of an Isolated Microburst. Part I: Dynamics and Structure, J. Atmos. Sci. 1988, 45(21), 3137-3160. DOI: 10.1175/1520-0469(1988)045<3137:NSOAIM>2.0.CO;2.

[20] M.S. Mason, D.F. Fletcher, G.S. Wood, Numerical Simulation of Idealized Three-Dimensional Downburst Wind Fields, J. Wind. Eng. Ind. Aerodyn. 2010, 32(11), 3558-3570. DOI: 10.1016/j.engstruct.2010.07.024

[21] A.Ya. Sagomonyan, Impact and Penetration of Solid Bodies into Liquid, Moscow State University Press, 1986.

[22] P.N. Vabishchevich, P.A. Pulatov, Numerical Solution of the Neumann Exterior Problem, USSR Computational Mathematics and Mathematical Physics, 1987, 27(2), 141-146. DOI: 10.1016/0041-5553(87)90169-8.

[23] G.K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, 1967.

[24] H. Lamb, Hydrodynamics, Dover, 1945.

[25] S.V. Alekseenko, P.A. Kuibin, V.L. Okulov, Introduction to Theory of Concentrated Vortices, Novosibirsk Institute of Thermophysics, 2003.

[26] I. Daubechies, Ten Lectures on Wavelets, Society for Industrial and Applied Mathematics, 1992.

Creative Commons Licence
Mechanics, Materials Science & Engineering Journal by Magnolithe GmbH is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at www.mmse.xyz.