ANTIBACTERIAL ASSESSMENT OF AgNPs SYNTHESIZED By CHEMICAL And BIOLOGICAL ROUTE AGAINST GRAM NEGATIVE SPECIES

<- Back to I. Materials Science Vol. 18

Read full-text

Cite the paper

Authors: P.Karthiga, T. Shankar, K. Swarnalatha

ABSTRACT. Nanosized particles of less than 100 nm in diameter are presently the most attracting rising consideration for the broad range of novel applications in various fields. The main methods used for silver nanoparticles synthesis are the physical, chemical and biological methods. The foremost biological systems occupied in this are bacteria, fungi, and plant extracts. The rapid progress in nanotechnology was always accompanied by their toxic impaction the environment and human health, which creates an urge for researchers to find an alternative approach. We have studied the formation of silver nanoparticles (AgNPs) from UV-VIS spectrum, which contains a strong plasmon band at 420 nm for biological and 425 nm for chemical method, which confirms silver ions reduction to Ag° in the aqueous phase. The development of metal silver was also confirmed by powder X-ray diffraction (XRD) analysis. Scanning electron micrograph (SEM) revealed useful information about the morphology of AgNPs and the average size of nanoparticles was in the range of 30 nm. The bactericidal activity of AgNPs biosynthesized from aqueous root extract of Abutilon indicum was more effective as antibacterial agent compared to chemical route. The activity was evaluated against Escherichia coli, Pseudomonas aurogenosa and Klebsiella pneumoniae. In the present work, AgNPs synthesized through chemical (Ascorbic acid) and biological (aqueous Abutilon indicum root extract) route were compared due its imperative scope in medicinal field.

Keywords: Abutilon indicum, bactericidal activity, gram negative strains.

DOI 10.2412/mmse.13.97.14

References

[1] A.R. Allafchian,  Z. Majidian,  V. Ielbeigi, M. Tabrizchi,  A novel method for the determination of three volatile organic compounds in exhaled breath by solid-phase microextraction–ion mobility spectrometry. Anal. Bioanal. Chem, 2016. 408, 839–847, doi:10.1007/s00216-015-9170-8

[2] A.K. Mittal,  Y. Chisti,  U.C. Banerjee,  Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv, 2013 31, 346–356, http://dx.doi.org/10.1016/j.biotechadv.2013.01.003

[3] K. Muthoosamy,  R.G. Bai, I.B. Abubakar,  S.M. Sudheer,  H.N. Lim,  H.S. Loh,  N.M. Huang,  S. Manickam, Exceedingly biocompatible and thin-layered reduced grapheme oxide nanosheets using an eco-friendly mushroom extract strategy. Int. J. Nanomedicine, 2015, 10, 1505–1519, doi: 10.2147/IJN.S75213

[4] C.M. Ng P.C. Chen,  S. Manickam, Green high-gravitational synthesis of silver nanoparticles using a rotating packed bed reactor (RPBR). Ind. Eng. Chem. Res, 2012, 51, 5375–538, dx.doi.org/10.1021/ie201795u

[5] P. Kuppusamy,  S.J. Ichwan,  N.R. Parine, M.M. Yusoff, G.P. Maniam, N. Govindan,  Intracellular biosynthesis of Au and Ag nanoparticles using ethanolic extract of Brassica oleracea L. And studies on their physicochemical and biological properties. J. Environ. Sci, 2015 29, 151–157, doi: 10.1016/j.jes.2014.06.050

[6] P. Prakash, P. Gnanaprakasam,  R. Emmanuel,  S. Arokiyaraj,  M. Saravanan,  Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids Surf. B, 2013, 108, 255–259, https://doi.org/10.1016/j.colsurfb.2013.03.017

[7] A.W. Orbaek, M.M., McHale, A.R. Barron, Synthesis and characterization of silver nanoparticles for an undergraduate laboratory. J. Chem. Edu, 2014, 92, 339–344, dx.doi.org/10.1021/ed500036b

[8] H. Bar, D.K. Bhui,  G.P. Sahoo,  P. Sarkar,  S. Pyne,  A. Misra, Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids Surf. A, 2009, 348, 212–216, doi:10.1016/j.colsurfa.2009.07.021

[9] Y. Gou, R. Zhou, X. Ye, S. Gao, X. Li, Highly efficient in vitro biosynthesis of silver nanoparticles using Lysinibacillus sphaericus MR-1 and their characterization, Sci. Technol. Adv. Mater, 2015, 16, 015004, doi:10.1088/1468-6996/16/1/015004

[10] M. Govindappa, H. Farheen C. P. Chandrappa, R. Channabasava, R.V. Rai, V.B.Raghavendra, Mycosynthesis of silver nanoparticles using extract of endophytic fungi, Penicillium species of Glycosmis mauritiana, and its antioxidant, antimicrobial, anti-inflammatory and tyrokinase inhibitory activity, Adv. Nat. Sci.: Nanosci. Nanotechnol, 2016,7 035014, doi:10.1088/2043-6262/7/3/035014

[11]  A. Ebrahiminezhad,M. Bagheri, S.M. Taghizadeh, A. Berenjian, Y.Ghasemi, Biomimetic synthesis of silver nanoparticles using microalgal secretory carbohydrates as a novel anticancer and antimicrobial, Adv. Nat. Sci.: Nanosci. Nanotechnol, 2016, 7, 015018, doi:10.1088/2043-6262/7/1/015018

[12] B.C. Selvi, G.Madhavan, J.Amutha, Cytotoxic effect of silver nanoparticles synthesized from Padina tetrastromatica on breast cancer cell line, Adv. Nat. Sci.: Nanosci. Nanotechnol, 2016, 7 035015, doi:10.1088/2043-6262/7/3/035015

[13] A.Saxena, R.M.Tripathi, F. Zafer, P.Sing, Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity, Mater.Lett. 2012,  67 9, https://doi.org/10.1016/j.matlet.2011.09.038

[14] A.K. Mittal, Y.Chisti, U.C. Banerjee, Synthesis of metallic nanoparticles using plant extracts Biotechnol. Adv, 2013,31, 346, https://doi.org/10.1016/j.biotechadv.2013.01.003

[15] A.R. Allafchian, H. Bahramian, S.A.H.Jalali, H.Ahmadvand,  Synthesis, characterization and antibacterial effect of new magnetically core–shell nanocomposites. J. Magn. Magn. Mater, 2015, 394, 318–324, https://doi.org/10.1016/j.jmmm.2015.06.086

[16] A.R.Allafchian, S.A.H.Jalali, Synthesis, characterization and antibacterial effect of poly (acrylonitrile/maleic acid)–silver nanocomposite. J. Taiwan Inst. Chem. Eng. 2015, 57, 154–159, https://doi.org/10.1016/j.jtice.2015.05.015

[17] K. Kalishwaralal,  V.Deepak,  S.R.K. Pandian,  M. Kottaisamy, S. BarathManiKanth,  B. Kartikeyan, Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf. B, 2010,  77, 257–262, doi:10.1016/j.colsurfb.2010.02.007

[18] A. Allafchian,  S.A.H. Jalali, H. Bahramian, H. Ahmadvand,  Preparation, characterization, and antibacterial activity of NiFe2O4/PAMA/Ag–TiO2 nanocomposite. J. Magn. Magn. Mater, 2016, 404, 14–20, https://doi.org/10.1016/j.jmmm.2015.12.015

[19] C. Perez, M. Paul and P.Bazerque, J.Acta Biol.Med.Exp.1990, 15, 113-115.

[20] R.R. Arvizo, S.Bhattacharyya, R.A.Kudgus, K.Giri, R.Bhattacharya, P. Mukherjee, Chem. Soc. Rev, 2012, 41, 2943-2970. doi. 10.1039/C2CS15355F

[21] A. Panacek, L. Kvitek, R. Prucek, M. Kolar, R. Vecerova, N. Pizurova, V. K. Sharma, T. Nevecna, R. Zboril, Silver Colloid Nanoparticles: Synthesis, Characterization, and Their Antibacterial Activity, J. Phys. Chem. B, 2006, 110, 16248-16253. doi.10.1021/jp063826h

[22] K. G. Stamplecoskie and J. C. Scaiano, Light Emitting Diode Irradiation Can Control the Morphology and Optical Properties of Silver Nanoparticles, J. Am. Chem. Soc, 2010, 132, 1825-1827. doi. 10.1021/ja910010b

[23] J.P. Novak, L.C. Brousseau, F.W. Vance, R.C. Johnson, B.I. Lemon, J.T. Hupp, Nonlinear optical properties of molecularly bridged gold nanoparticle arrays. J Am Chem Soc, 2000, 122, 12029-30, doi.10.1021/ja003129h

[24] M. Yilmaz, H.Turkdemir, M.A.Kili, E. Bayram, A. Cicek, A. Mete, B. Ulug, Biosynthesis of silver nanoparticles using leaves of Stevia rebaudiana Mater. Chem. Phys, 2011, 130, 1195, https://doi.org/10.1016/j.matchemphys.2011.08.068

[25] R. Kumar, S.M. Roopan,A.  Prabhakarn, V.G. Khanna, S. Chakroborty, Agricultural waste Annona squamosa peel extract: Biosynthesis of silver nanoparticles, Spectrochim. Acta A, 2012,  90 173, https://doi.org/10.1016/j.saa.2012.01.029

[26] T.C. Prathna, N. Chandrasekaran, M. Raichur, A. Mukherjee,  J. Colloid. Surf. B: Biointerfaces ,2011, 82:152-159

[27] S. Liau, D.  Read, W. Pugh, J. Furr, A. Russell. Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterialaction of silver ions. Lett Appl Microbiol 1997,4, 279-383, doi. 10.1046/j.1472-765X.1997.00219.x

[28] I. Sondi, B.S. Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria, J. Colloid Interface Sci.2004, 275 177, https://doi.org/10.1016/j.jcis.2004.02.012

[29] J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramirez, M.J. Yacaman, The bactericidal effect of silver nanoparticles, Nanotechnology, 2005,16, 2346, http://iopscience.iop.org/0957-4484/16/10/059

[30]A.  Panacek, L. Kvitek, R. Prucek, M. Kolar, R.Vecerova, N. Pizurova , V.K. Sharma, T. Nevecna, R. Zboril, Silver Colloid Nanoparticles: Synthesis, Characterization, and Their Antibacterial Activity, J. Phys. Chem. B, 2006, 110 16248, doi. 10.1021/jp063826h

[31] M. Danilczuk, A. Lund, J. Saldo, H.Yamada, J. Michalik, Conduction electron spin resonance of small silver particles, Spectrochim. Acta A, 2006, 63 189, https://doi.org/10.1016/j.saa.2005.05.002

[32] J.S. Kim, Antimicrobial effects of silver nanoparticles, Nanomed. Nanotechnol. Biol. Med, 2007, 3 95, https://doi.org/10.1016/j.nano.2006.12.001

[33] N.A. Amro, L.P. Kotra, K.W. Mesthrige, A. Bulychev, S. Mobashery, G. Liu, High-Resolution Atomic Force Microscopy Studies of the Escherichia coli Outer Membrane:  Structural Basis for Permeability,  Langmuir, 2000, 16 2789, doi. 10.1021/la991013x

Creative Commons Licence
Mechanics, Materials Science & Engineering Journal by Magnolithe GmbH is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at www.mmse.xyz.