Highly Porous and Novel 1D-TiO2 Nanoarchitecture with Light Harvesting Morphology for Photovoltaic Applications

<- Back to I. Materials Science Vol. 9 Iss. 2

Cite the paper

K. Pugazhendhi, W. Jothi Jeyarani, Tenzin Tenkyong, P. Naveen Kumar, B. PraveenJ. Merline Shyla (2017). Highly Porous and Novel 1D-TiO2 Nanoarchitecture with Light Harvesting Morphology for Photovoltaic ApplicationsMechanics, Materials Science & Engineering, Vol 9. doi:10.2412/mmse.3.32.722

Authors: Vidhya Rajendran, Gandhimathi Rajendran, Neyvasagam Karuppathevar

ABSTRACT. A novel photoanode architecture revamped by dandelion-like TiO2 (DS) structures as light harvesting ingredients over the vertically oriented TiO2 nanowire (NW) bunches has been prepared on FTO glass without any seed layer through a single-step solvothermal process. High Resolution SEM observations showed that the synthesized photoanode consists of dandelion-like structures over vertically oriented nanowires with high surface porosity. Both the nanowire and dandelion structures possess rutile TiO2 crystal phase as confirmed with XRD analysis which also revealed that the nanoarchitecture is single crystalline, an essential condition for faster electron transport at the interfaces. The enhanced light harvesting capabilities and bandgap were examined using UV-DRS. Field dependent dark and photo conductivity measurements were performed to observe the response of the material to the visible spectrum. The proposed photoanode incorporating 1D-TiO2 electron transporters provides a novel configuration for improved light harvesting application.

Keywords: photoanode, dandelion-like TiO2 structures, nanowire, solvothermal, light harvesting

DOI 10.2412/mmse.3.32.722

References

[1] http://www.agci.org/library/presentations/about/presentation_details.php?recordID=16950.

[2] B. O’Regan, M. Grätzel, Nature, 1991, 353, 737–740. DOI: 10.1038/353737a0.

[3] M. Malekshahi Byranvand, A. Nemati Kharat, M.H. Bazargan, Nano-Micro Lett., 2012, 4(4), 253-266. DOI: 10.3786/nml.v4i4.p253-266.

[4] S. Mathew, A. Yella, P.Gao, R. Humphry-Baker, B.F.E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Gratzel, Nat. Chem,2014, 6, 242-247.DOI:
10.1038/nchem.1861.

[5] T. J. Abodunrin, M. L. Akinyemi, A. O. Boyo & J. A. Olugbuyiro (2015). Photo Degradation in Dye-Sensitized Solar Cells. Mechanics, Materials Science & Engineering, Vol 1. doi:10.13140/RG.2.1.3208.0400

[6] J. Sahaya Selva Mary, P. Princy, J. Annai Joseph Steffy, P. Naveen Kumar, Neena Bachan, J. Merline Shyla, Int. J. Technical Research and Applications, 2016, 37, 60-64.

[7] Zhao-Qian Li, Ya-Ping Que, Li-E Mo, Wang-Chao Chen, Yong Ding, Yan-Mei Ma, Ling Jiang, Linhua Hu, Songyuan Dai, ACS Appl. Mater. Interfaces, 2015, 7 (20), 10928–10934. DOI:
10.1021/acsami.5b02195.

[8] Fang Shao, Jing Sun, Lian Gao, Songwang Yang, and Jianqiang Luo, ACS Appl. Mater. Interfaces, 2011, 3, 2148–2153. DOI: 10.1021/am200377g.

[9] Sheng Meng, Jun Ren, EfthimiosKaxiras, Nano Lett., 2008, 8(10), 3266-3272. DOI: 10.1021/nl801644d

[10] Ming La, Yunxiao Feng, Changdong Chen, Chengye Yang, Songtian Li,Int. J. Electrochem. Sci., 2015, 10, 1563 – 1573. DOI: 10.1.1.667.156.

[11] Poulomi Roy, Steffen Berger, PatrikSchmuki, Angew .Chem. Int. Ed., 2011, 50, 2904–2939. DOI:10.1002/anie.201001374.

[12] Bin Liu, S. Eray. J. Aydil. AM. CHEM. SOC., 2009, 131, 3985–3990.DOI: 10.1021/ja8078972.

[13] Weixing Song, Yudong Gong, Jianjun Tian, Guozhong Cao, Huabo Zhao, Chunwen Sun, ACS Appl. Mater. Interfaces, 2016.8(21), 13418–13425. DOI: 10.1021/acsami.6b02887.

[14] A. M. Bakhshayesh, S. S. Azadfar, N. Bakhshayesh, J. Mater Sci: Mater Electron, 2015, 26(12), 9808–9816. DOI: 10.1007/s10854-015-3653-4.

[15] Yunxia Hu, Baoyuan Wang, Jieqiong Zhang, Tian Wang, Rong Liu, Jun Zhang, Xina Wang and Hao Wang, Nanoscale Research Letters, 2013, 8,222. DOI: 10.1186/1556-276X-8-222.

[16] Wu-Qiang Wu, Bing-Xin Lei, Hua-Shang Rao, Yang-Fan Xu, Yu-Fen Wang, Cheng-Yong Su, Dai-Bin Kuang, Scientific Reports, 2013, 3, 1352. DOI: 10.1038/srep01352.

[17] Leroy Alexander, Harold P.Klug, Journal of Applied Physics, 1950, 21, 137. DOI: 10.1063/1.1699612.

[18] Hailiang Li, Qingjiang Yu, Yuewu Huang, Cuiling Yu, Ren-Zhi Li, Jinzhong Wang,FengyunGuo, Yong Zhang, Xitian Zhang, Peng Wang, Liancheng Zhao, ACS Appl. Mater. Interfaces, 2016, 8(21), 13384–13391. DOI: 10.1021/acsami.6b01508.

[19] Zhao-Qian Li, Wang-Chao Chen, Fu-Ling Guo, Li-E Mo, Lin-Hua Hu & Song-Yuan Dai, Scientific Reports, 5, 14178. DOI: 10.1038/srep14178.

[20] Harry G. Hecht, J. Research of the NBS-A. Physics and Chemistry, 1976, 80A (4). DOI: 10.6028/jres.080A.056.

[21] Tenzin Tenkyong, Neena Bachan, J. Raja, P. Naveen Kumar, J. Merline Shyla, Materials Science-Poland, 2015, 33(4), 826-834. DOI 10.1515/msp-2015-0097.

[22] A. Kumar, F. Xavier, J.M. Shyla, J. Mater. Sci., 2013, 48, 3700. DOI: 10.1007/s10853-013-7167-2.

[23] V. Chandrakala, J. Annai Joseph Steffy, NeenaB achan, W. Jothi Jeyarani, Tenzin Tenkyong, J. Merline Shyla, Acta Metall. Sin. (Engl. Lett.), 2016, 29, 457. DOI: 10.1007/s40195-016-0409-y.

https://mmse.xyz/Papers/vol-9-2017/part2/ID201703284.pdf

Creative Commons Licence
Mechanics, Materials Science & Engineering Journal by Magnolithe GmbH is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at www.mmse.xyz.