Macroscopic Geometrical Modelling of Oil Palm Mesocarp Fibers of Three Varieties of Palm Nut

<- Back to II. Mechanical Engineering & Physics Vol. 5

Cite the paper

E. Njeugna, P. W. M. Huisken, D. Ndapeu, N. R. T. Sikame & J. Y. Dréan (2016). Macroscopic Geometrical Modelling of Oil Palm Mesocarp Fibers of Three Varieties of Palm Nut. Mechanics, Materials Science & Engineering, Vol 5. doi:10.13140/RG.2.1.2275.9921

Authors: E. Njeugna, P. W. M. Huisken, D. Ndapeu, N. R. T. Sikame, J. Y. Dréan

ABSTRACT. This work is part of a process of characterization of plant fibers. The macroscopic geometric parameter of Oil Palm Mesocarp Fibers (length, diameter) was measured. A mathematical model of the evolution of the cross-section is provided in order to facilitate a digital reconstruction of the geometry of these fibers. In this context, we manually isolated with great care many fibers of several oil palm varieties Dura, Tenera and Pissifera distinguishing for the last two varieties two extraction position. Five different partitions of fibers have been studied. The lengths of these fibers were measured and the transverse dimensions of each of the fibers were taken at five equally spaced discrete and different sections. For each section, we made two measurements at 90 ° in the front plane and the profile view. The mathematical model of the evolution of the profile were determined in each plan and the evolution of the cross section model was described for each of the five partitions on the basic assumption that this cross section is elliptical according to SEM images and flattening rate of the cross section we calculated.

Keywords: Oil Palm Mesocarp fibers, modeling, geometry, cross section, profile

DOI 10.13140/RG.2.1.2275.9921

References

[1] M. Z. M. Yusoff, M. S. Salit, N. Ismail and R. Wirawan, Mechanical properties of short random oil palm fiber reinforced epoxy composites, Sains Malaysiana 39, 87-92, 2010.

[2] M. Baskaran, R. Hashim, N. Said, S. M. Raffi, K. Balakrishnan, K. Sudesh, O. Sulaiman, T. Arai, A. Kosugi, Y. Mori, T. Sugimoto and M. Sato, Properties of binderless particleboard from oil palm trunk with addition of polyhydroxyalkanoates, Compos. Part B Eng., 43, 1109-1116, 2012, doi:10.1016/j.compositesb.2011.10.008

[3] M. Jawaid,  H.P.S. A. Khalilb, A. Hassana, R. Dunganic and A. Hadiyanec, Effect of jute fiber loading on tensile and dynamic mechanical properties of oil palm epoxy composites, Compos. Part B Eng., 45, 619-624, 2013, doi:10.1016/j.compositesb.2012.04.068

[4] R. S. Odera, O. D. Onukwuli and E. C. Osoka, Tensile and Compression Strength Characteristic Raffia Palm Fibre-Cement Composites, J. Emerg. Trends Eng. Appl. Sci. 2, 231-234, 2011.

[5] S. Taj, M. A. Munawar and S. Khan, Natural fiber-reinforced polymer composites, proc. Pakistan Acad. sci. 44, 129-144, 2007.

[6] S. N. Monteiro, K. G. Satyanarayana, A. S. FerreiraI, D.C.O. Nascimento, F. P. D. Lopes, I. L. A. Silva, A. B. Bevitori, W. P. Inácio, J. B. Neto and T. G. Portela, Selection of high strength natural fibers, Rev. Matéria, 15, 488-505, 2011, doi: 10.1590/S1517-70762010000400002

[7] M. S. Sreekala, M. G. Kumaran and S. Thomas, Stress relaxation behaviour in oil palm fibres, mater. Lett., 50, 263-273, 2001, doi:10.1016/S0167-577X(01)00237-3

[8] M. S. Sreekala, M. G. Kumaran and S. Thomas, Water sorption in oil palm fiber reinforced phenol formaldehyde composites, Compos. Part A Appl. Sci. Manuf., 33, 763-777, 2002, doi:10.1016/S1359-835X(02)00032-5

[9] N. R. Sikame, E. Njeugna, M. Fogue,  J.-Y. Drean,  A. Nzeukou and D. Fokwa, Study of Water Absorption in Raffia vinifera Fibres from Bandjoun, Cameroon, Sci. World J., http://dx.doi.org/10.1155/2014/912380, 2014.  

[10] J. Moothoo, D. Soulat, P. Ouagne and S. Allaoui, Caractérisations mécaniques de renforts à base de fibres naturelles pour l’analyse de la déformabilité, Proc. 17eme Journées Nationales des Composites JNC 17, hal-00597931 pp.55, 2011.

[11] Y. Nitta, K. Goda, J. Noda and W-Il lee, cross-sectional area evaluation and tensile properties of alkali-treated kenaf fibers, Compos. Part A Appl. Sci. Manuf., 49, 132-138, 2013.

[12] F. O. Okafor and S. Sule, Models for prediction of structural properties of palmnut fibre-reinforced cement mortar composites, Niger. J. Technol., 27, 13-21, 2008.

[13] H. Moussaddy, M. Lévesque and D. Therriault, évaluation des performances des modèles d’homogénéisation pour des fibres aléatoirement dispersées ayant des rapports de forme élevés, Proc. 17eme Journées Nationales des Composites hal-00598129, pp.83, Poitiers, 2011.

[14] W. P. Inacio, F. P. D. Lopes and S. N. Monteiro, Diameter dependence of tensile strength by weibull analysis: part III sisal fiber, Rev. Matéria, 15, 124-130, 2010.

[15] B. Bevitori, I. L. A. Silva and F. P. D. Lopes, Diameter dependence of tensile strength by Weibull analysis: part II jute fiber, Rev. Matéria, 15, 117-123, 2010.

[16] V. Placet, F. Trivaudey, O. Cisse, V. Guicheret-Retel and L. Boubakar, Influence du diamètre sur le module d’Young apparent des fibres de chanvre. Effet géométrique ou microstructural, Proc. 20ème Congrès Français de Mécanique, ISBN 978-2-84867-416-2 (CFM 20), 3864-3869, Besançon, 2012.

[17] L. L. da Costa, R. L. Loiola and S. N. Monteiro, Diameter dependence of tensile strength by Weibull analysis: part I bamboo fiber, Rev. Matéria, 15, 110-116, 2010.

[18] F. Tomczak, T. H. D. Sydenstricker and K. G. Satyanarayana, studies on lignocellulosic fibers of Brazil. Part II: Morphology and properties of Brazilian coconut fibers, Compos. Part A Appl. Sci. Manuf., 38, 1710-1721, 2007.

[19] M. A. Norul izani,  M. T. Paridah,  U. M. K. Anwar,  M. Y.Mohd Norb and P. S. H’ng, effect of fiber treatment on morphology; tensile and thermo-gravimetric analysis of oil palm empty fruit bunches fibers, Compos. Part B Eng., 45, 1241-1257, 2013.

[20] F. Ilczysyn,  A. Cherouat and G. Montay, Nouvelle approche pour la caractérisation mécanique des fibres naturelles, Proc. 20ème Congrès Français de Mécanique, ISBN 978-2-84867-416-2 (CFM 20), 3828-3833, Besançon, 2012.

[21] F. O. Okafor, Span Optimization for palmnut fibre-reinforced mortar roofing tiles, Ph. D. Dissertation University of Nigeria Nsukka, Nigeria, 1994.

[22] O. K. Owolarafe, M. T. Olabige and M. O. Faborode, Physical and mechanical properties of two varieties of fresh oil palm fruit, J. Food Eng., 78, 1228-1232, 2007.

[23] Y. Y. Then, N. A. Ibrahim, N. Zainuddin, B. W. Chieng, H. Ariffin, and W. M. Z. Wan Yunus,  Influence of Alkaline-Peroxide Treatment of Fiber on the Mechanical Properties of Oil Palm Mesocarp Fiber/Poly(butylene succinate) Biocomposite, BioResources, 10, 1730-1746, 2015.

[24] C. C. Eng, N. A. Ibrahim, N. Zainuddin, H. Ariffin, W. M. Z. Wan Yunus, Chemical Modification of Oil Palm Mesocarp Fiber by Methacrylate Silane: Effect on Morphology, Mechanical, and Dynamic Mechanical Properties of Biodegradable Hybrid Composites, BioResources, 11, 861-872, 2016.

[25] B. Régis and T. Michel, Analyse des series temporelles, 2eme édition, p. 296, Dunod, 2008.

Creative Commons Licence
Mechanics, Materials Science & Engineering Journal by Magnolithe GmbH is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at www.mmse.xyz.