Manifestation of Ferromagnetism in Rare Earth Doped BiFeO3 Multiferroics

<- Back to I. Materials Science Vol. 14

Read full-text

Cite the paper

M., Avinash; M., Murlidharan; K., Sivaji

Manifestation of Ferromagnetism in Rare Earth Doped BiFeO3 Multiferroics Journal Article

Mechanics, Materials Science & Engineering, 14 , 2018, ISSN: 2412-5954.

Abstract | Links | BibTeX

Authors: Avinash M., Murlidharan M., Sivaji K.

ABSTRACT. Polycrystalline Bi1-xNdxFe1-xMnxO3 (x=0.00-0.50) ceramic powders have been synthesized by solid-state method. The phase identification and lattice parameter were analyzed using XRD technique. Active Raman modes  and the local order and disorder parameters were probed. Surface morphology of the prepared samples was analyzed by Scanning electron microscopy and the particle size was estimated. Magnetic study of the prepared sample demonstrate the antiferromagnetic to weak ferromagnetic behaviour. The transition from antiferromagnetic to weak ferromagnetic nature can be understood interms of exchange interactions. Magnetic hysteresis loops were observed in the materials with increasing magnetization as rare Earth substitution increases. From the present investigation, it was observed that the co doping of Nd and Mn in BiFeO3 results in a new class of multiferroic material for the fabrication of optoelectronic devices.

Keywords: rare earth doping, XRD, Raman, SEM, ferromagnetic hysteresis loop

DOI 10.2412/mmse.34.79.169

References

[1] Fiebig, M. (2005), Revival of the magnetoelectric effect, J. Phys. D: Appl. Phys., 38(8), R123, DOI: 10.1088/0022-3727/38/8/R01.

[2] VanAken, B. B.; Rivera, J. –P.; Schmid, H.; Fiebig, M. (2007), Observation of ferrotoroidic domains, Nature, 449, 702, DOI: 10.1038/nature0613.

[3] Fischer, P.; Polomska, M.; Sosnowska, I.; Szymanksi (1980), Temperature dependence of the crystal and magnetic structures of BiFeO3, M. J. Phys. C: Condens. Matter, 13(10), 1931, DOI: 10.1088/0022-3719/13/10/012

[4] Tabares-Munoz, C.; Rivera, J. P.; Monnier, A.; Schmid, H. (1985), Measurement of the Quadratic Magnetoelectric Effect on Single Crystalline BiFeO3, Jpn. J. Appl. Phys., 24, 1051, DOI: 10.7567/JJAPS.24S2.1051.

[5] Sosnowska, I.; Peterlin-Neumaier, T.; Steichele (1982), Spiral magnetic ordering in bismuth ferrite, E. J. Phys. C: Condens. Matter, 15(23), 4835, DOI: 10.1088/0022-3719/15/23/020.

[6] Maître, A.; François, M.; Gachon, J. C. (2004), J. Pha. Equi. and Diff., 25(1), 59-67, DOI: 10.1007/s11669-004-0171-0.

[7]  P.Kumar, M. Kar (2014), Tuning of net magnetic moment in BiFeO3 multiferroics by co-substitution of Nd and Mn, Physica B, 448, 90–95, DOI: 10.1016/j.physb.2014.03.080.

[8] M. Muralidharan, V. Anbarasu, A. Elaya Perumal, K. Sivakumar (2014), Carrier induced ferromagnetism in Yb doped SrTiO3 perovskite system, J. Mater. Sci. Mater. Electron., 25(9), 4078–4087, DOI: 10.1007/s10854-014-2132-7.

[9] Hermet P, Gofinet M, Kreisel J et al (2007), Raman and infrared spectra of multiferroic bismuth ferrite from first principles. Phys Rev B, 75(22), 220102, DOI: 10.1103/PhysRevB.75.220102.

[10] Hlinka J, Pokorny J, Karimi S et al (2011), Angular dispersion of oblique phonon modes in BiFeO3 from micro-Raman scattering. Phys Rev B, 83(2), 020101, DOI: 10.1103/PhysRevB.83.020101.

[11] Bielecki J, Svedlindh P, Tibebu DT et al (2012), Structural and magnetic properties of isovalently substituted Multiferroic BiFeO3: insights from Raman spectroscopy. Phys Rev B, 86(18), 184422, DOI: 10.1103/PhysRevB.86.184422.

[12] Fiebig, M. (2005), Revival of the magnetoelectric effect,  J. Phys. D: Appl. Phys., 38(8), R123, DOI: 10.1088/0022-3727/38/8/R01.

[13] D. Chen, K. Tang, F. Li, H. Zheng (2006), A Simple Aqueous Mineralization Process to Synthesize Tetragonal Molybdate Microcrystallites, Cryst. Growth Des., 6(1), 247-252, DOI: 10.1021/cg0503189.

[14] Niu, P. Yang, W. Wang, F. He, S. Gai, D. Wang, J. Lin (2011), Solvothermal synthesis of SrMoO4:Ln (Ln = Eu3+, Tb3+, Dy3+) nanoparticles and its photoluminescence properties at room temperature, Mater. Res. Bull., 46(3), 333-339, DOI: 10.1016/j.materresbull.2010.12.016.

[15] P. Yang, C. Li, W. Wang, Z. Quanb, S. Gai, J. Lin (2009), Uniform AMoO4:Ln (A=Sr2+, Ba2+; Ln=Eu3+, Tb3+) submicron particles: Solvothermal synthesis and luminescent properties, J. Solid State Chem., 182(9), 2510–2520, DOI: 10.1016/j.jssc.2009.07.009.

[16] Yi Ting, Chi-Shun Tu et al (2017), Magnetization, phonon, and X-ray edge absorption in barium-doped BiFeO3 ceramics, J Mater Sci, 52(1), 581–594, DOI: 10.1007/s10853-016-0355-0.

[17] Paudel TR, Jaswal SS, Tsymbal EY (2012), Intrinsic defects in multiferroic BiFeO3 and their effect on magnetism. Phys Rev B, 85(10), 104409, DOI: 10.1103/PhysRevB.85.104409.

Creative Commons Licence
Mechanics, Materials Science & Engineering Journal by Magnolithe GmbH is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at www.mmse.xyz.