Ab initio Study of Electronic, Structural, Thermal and Mechanical Characterization of Cadmium Chalcogenides

<- Back to I. Materials Science Vol. 9

Cite the paper

Devi Prasadh P.S., B.K. Sarkar, (2017). Ab initio Study of Electronic, Structural, Thermal and Mechanical Characterization of Cadmium Chalcogenides. Mechanics, Materials Science & Engineering, Vol 9. doi:10.2412/mmse.32.38.817

Authors: Devi Prasadh PS, B.K. Sarkar

ABSTRACT. Based on Density Functional Theory, we have applied Full Potential Augmented Plane Wave plus local orbital method (FAPW+lo)to study the electronic, structural, optical, thermal and mechanical properties of some semiconducting materials. In this paper we discuss the Zinc blende, CdX (X = S, Se and Te) compounds with the full-potential linear-augmented plane wave (FP-LAPW) method within the framework of the density functional theory (DFT) for electronic, structural, thermal and mechanical properties using the WIEN2k code. For the purpose of exchange-correlation energy (Exc) determination in Kohn–Sham calculation, the standard local density approximation (LDA) formalism is utilized. Murnaghan’s equation of state (EOS) is used for volume optimization by minimizing the total energy with respect to the unit cell volume. The calculated lattice parameters and thermal parameters are in good agreement with other theoretical calculations as well as available experimental data.

Keywords: Density Functional Theory, Chalcogenides, FP-LAPW+lo.

DOI 10.2412/mmse.32.38.817


[1] Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964). doi: 10.1103/PhysRev.136.B864

[2] K. H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt, L. Nordström, Efficient linearization of the augmented planewave method. Phys. Rev. B 64, issue 19, 195134 (2001). doi: 10.1103/ PhysRevB.64.195134

[3] Schwarz, P. Blaha, G.K.H. Madsen, Electronic structure calculations of solids using the WIEN2k package for material science, Comp. Phys.Commun., Vol. 147, Issue 1, pp. 71–76 (2002). doi: 10.1016/S0010-4655(02)00206-0

[4] P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). doi: 10.1103/PhysRevLett.77.3865

[5] D. Murnaghan, On the Theory of the Tension of an Elastic Cylinder, Proc. Natl. Acad. Sci., Vol. 30, No. 12, pp. 382–384 (1944), USA. PMID:16588670 PMCID:PMC1078732

[6] J. Monkhorst, J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B. 13, No. 12, pp. 5188–5192 (1976). doi: 10.1103/PhysRevB.13.5188

[7] Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An augmented plane wave plus local orbitals program for calculating crystal properties, (User’s Guide), Inst. of Physical and Theoretical Chemistry, Vienna University of Technology, Austria, pp. 1-205, (2001).

[8] Madelung, H. Weiss, and M. Schultz, eds.Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology. Group III: Crystal and Solid State Physics. Vol. 17, Subvolume A: Physics of Group IV Elements and III-V Compounds. Berlin: Springer (1982).

[9] Al Shafaay, Structural, electronic, mechanical and thermodynamic properties of CdS compound, J. Che., Bio. And Phy. Sci., Vol. 4, No. 4; pp. 3606–3618 (2014).

[10] HakanGurel, OzdenAkinci, HilmiUnlu, First principles calculations of Cd and Zn chalcogenides with modified Becke–Johnson density potential, Superlattices and Microstructures, Vol. 51, Issue 5, pp. 725–732 (2012). doi: 10.1016/j.spmi.2012.02.010

[11] Deligoz, K. Colakoglu and Y. Ciftci, “Elastic, Elec tronic, and Lattice Dynamical Properties of CdS, CdSe, and CdTe,” Physica B: Physics of Condensed Matter, Vol. 373 (2006), pp. 124-130. doi:10.1016/j.physb.2005.11.099

[12] Kitamura, S. Muramatsu & W. A. Harrison, “Elastic properties of semiconductors studied by extended Hückel theory”, Physical Review B, Vol. 46, No. 3, (1992), pp. 1351-1357. doi: 10.1103/PhysRevB.46.1351

[13] Ouendadji, S. Ghemid, H. Meradji, F.El Haj Hassan, Theoretical study of structural, electronic, and thermal properties of CdS, CdSe and CdTe compounds, Comp. Mat. Sci., Vol. 50, pp. 1460–1466 (2011). doi: 10.1016/j.commatsci.2010.11.035

[14] Dadsetani, A. Pourghazi, Optical properties of strontium monochalcogenides from first principles, Phys. Rev. B, Vol. 73, No. 19, pp. 195102, (2006). doi: 10.1103/PhysRevB.73.195102


Creative Commons Licence
Mechanics, Materials Science & Engineering Journal by Magnolithe GmbH is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at www.mmse.xyz.