Piezoelectric and Ferroelectric Properties of Lead-free 0.9(Na0.97K0.03NbO3)-0.1BaTiO3 Solid Solution

<- Back to I. Materials Science Vol. 9 Iss. 2

Cite the paper

S. Sasikumar, R. Saravanan, S. Saravanakumar (2017). Piezoelectric and Ferroelectric Properties of Lead-free 0.9(Na0.97K0.03NbO3)-0.1BaTiO3 Solid SolutionMechanics, Materials Science & Engineering, Vol 9. doi:10.2412/mmse.47.30.332

Authors: S. Sasikumar, R. Saravanan, S. Saravanakumar

ABSTRACT. Lead-free piezoelectric 0.9(Na0.97K0.03NbO3)-0.1BaTiO3 ceramic has been synthesized using conventional solid-state reaction method. The results of X-ray diffraction analysis (XRD) show that the prepared sample displays typical perovskite structure with tetragonal space group P4mm. The crystal structure of 0.9(Na0.97K0.03NbO3)-0.1BaTiO3 powder was determined by Rietveld refinement analysis. The charge density distribution of the prepared sample has been investigated by using maximum entropy method. The optical band gap of the solid solution has been investigated using UV-visible spectroscopy (UV-Vis). Scanning electron microscopic (SEM) measurements were performed to study the surface morphology. The elemental composition of the 0.9(Na0.97K0.03NbO3)-0.1BaTiO3 sample was analyzed by energy-dispersive X-ray (EDS) spectrometer. The ferroelectric nature of the sample has been determined through polarization and electric field hysteresis measurements.

Keywords: Ceramics, Piezoelectricity, X-ray diffraction, Electronic structure.

DOI 10.2412/mmse.47.30.332

References

[1] Y. Saito, H. Takao, T. Tani, T.T. Nonoyama, K. Takatori, T. Homma, T. Nagaya and M. Nakamura, (2004) Lead-free piezoceramics. Nature 432, 84. DOI:10.1038/nature03028

[2] T.R. Shrout and S.J. Zhang, (2007) Lead-free piezoelectric ceramics: Alternatives for PZT? J Electroceram. 19, 113. DOI: 10.1007/s10832-007-9047-0

[3] W. Liu, X. Ren, (2009) Large piezoelectric effect in Pb-free ceramics, Large Piezoelectric Effect in Pb-Free Ceramics Phys. Rev. Lett. 103. 257602. DOI:doi.org/10.1103/PhysRevLett.103.257602

[4] Q. Zhang, B. Zhang, H. Li, P. Shang, (2010) Effects of Na/K ratio on the phase structure and electrical properties of NaxK1-xNbO3 lead-free piezoelectric ceramics, Rare Metals. 29, 220-225. DOI: 10.1007/s12598-010-0038-y

[5] M.R. Yang, C.-S. Hong, C.C. Tsai, S.Y. Chu, (2009) Effect of sintering temperature on the piezoelectric and ferroelectric characteristics of CuO doped 0.95(Na0.5K0.5)NbO3-0.05LiTaO3 ceramics, J. Alloys Compd. 488, 169-173. DOI:10.1016/j.jallcom.2009.07.174

[6] H.Y. Park, I.T. Seo, J.H. Choi, S. Nahm, H.G. Lee, (2010) Low-temperature sintering and piezoelectric properties of (Na0.5K0.5)NbO3 lead-free piezoelectric ceramics, J. Am. Ceram. Soc. 93, 36-39. DOI: 10.1111/j.1551-2916.2009.03359.x

[7] G.Z. Zang, J.F. Wang, H.C. Chen, W.B. Su, C.M. Wang, P. Qi, B.Q. Ming, J. Du, L.M. Zheng, S. Zhang, T.R. Shrout, (2006) Perovskite (Na0.5K0.5)1-x(LiSb)xNb1-xO3 lead-free piezoceramics, Appl. phys. Lett. 88, 212908. DOI: 10.1063/1.2206554

[8] J. Zeng, Y. Zhang, L. Zheng, G. Li, Q. Yin, (2009) Enhanced ferroelectric properties of potassium sodium niobate ceramics modified by small amount of K3Li2Nb5O15, J. Am. Ceram. Soc. 92, 752-754. DOI: 10.1111/j.1551-2916.2008.02921.x

[9] D. Lin, K.W. Kwok, H.L.W. Chan, (2007) Structure, dielectric, and piezoelectric properties of CuO-doped K0.5Na0.5NbO3-BaTiO3 lead-free ceramics, J. Appl. Phys. 102, 074113. DOI: 10.1063/1.2787164

[10] R.C. Chang, S.Y. Chu, Y.P. Wong, Y.F. Lin, C.S. Hong, (2007) Properties of (Na0.5K0.5)NbO3-SrTiO3 based lead-free ceramics and surface acoustic wave devices, Sens. Actuators A: Phys. 136, 267–272. DOI:10.1016/j.sna.2006.11.002

[11] R.C. Chang, S.Y. Chu, Y.F. Lin, C.S. Hong, Y.P. Wong, (2007) An investigation of (Na0.5K0.5)NbO3-CaTiO3 based lead-free ceramics and surface acoustic wave devices, J. Eur. Ceram. Soc. 27, 4453-4460. DOI:10.1016/j.sna.2006.11.002

[12] Y. Wang, L. Qibin, F. Zhao, (2010) Phase transition behavior and electrical properties of [(K0.50Na0.50)1-xAgx](Nb1-xTax)O3 lead-free ceramics, J. Alloys Compd. 489, 175-178. DOI:10.1016/j.jallcom.2009.09.047

[13] R. Zuo, Z. Xu, L. Li, (2008) Dielectric and piezoelectric properties of Fe2O3-doped (Na0.5K0.5)0.96Li0.04Nb0.86Ta0.1Sb0.04O3 lead-free ceramics, J. Phys. Chem. Solids 69, 1728-1732. DOI:10.1016/j.jpcs.2008.01.003

[14] Q. Zhang, B.-P. Zhang, H.-T. Li, P.-P. Shang, (2010) Effects of Sb content on electrical properties of lead-free piezoelectric [(Na0.535K0.480)0.942-Li0.058](Nb1-xSbx)O3 ceramics, J. Alloys Compd. 490, 260-263. DOI:10.1016/j.jallcom.2009.09.172

[15] H.M. Rietveld, (1969) A Profile Refinement Method for Nuclear and Magnetic, J. Appl. Cryst. 2, 65-71. doi.org/10.1107/S0021889869006558

[16] V. Petříček, M. Dušek, L. Palatinus, Jana 2006. The Crystallographic Computing System, Institute of Physics, Prague, Czech Republic, 2006.

[17] D.L. Wood, J. Tauc, (1972) Weak absorption tails in amorphous semiconductors. Phys. Rev. B5, 3144.

[18] D.M. Collins, (1982) Electron density images from imperfect data by iterative entropy maximization, Nature 298, 49-51.

[19] K. Momma, F. Izumi, Commission on Crystallogr. Comput., IUCr Newslett., No.7, 106 (2006).

https://mmse.xyz/Papers/vol-9-2017/part2/ID20170322013.pdf

Creative Commons Licence
Mechanics, Materials Science & Engineering Journal by Magnolithe GmbH is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at www.mmse.xyz.