Spectroscopic Analysis of Gas Phase Astrophysical Molecule: Beryllium Monofluride

<- Back to I. Materials Science Vol. 9 Iss. 2

Cite the paper

R. Sindhan, P. Sriramachandran, R. Shanmugavel, S. Ramaswamy (2017). Spectroscopic Analysis of  Gas Phase Astrophysical Molecule: Beryllium MonoflurideMechanics, Materials Science & Engineering, Vol 9. doi:10.2412/mmse.60.92.355

Authors: R. Sindhan, P. Sriramachandran, R. Shanmugavel, S. Ramaswamy

ABSTRACT. The beryllium monofluride (BeF) is astrophysically significant molecule.The radiative transition parameters such as Franck-Condon (FC) factor, r-centroids, electronic transition moment, Einstein coefficient, band oscillator strength, radiative life time and effective vibrational temperature have been computed for system of BeF molecule by the more reliable numerical integration procedure for the experimentally known vibrational levels using Rydberg-Klein-Rees (RKR) potential energy curves. The effective vibrational temperature of this system of BeF molecule was found to be nearly 5630 K. Hence, the radiative transition parameters as well as effective vibrational temperature help us to ascertain the presence of BeF molecule in the interstellar medium, S-stars and sunspots.

Keywords: BeF, Electronic transition moment, life time, vibrational temperature, Umbra.

DOI 10.2412/mmse.60.92.355

References

[1] Zun Lue Zhu, Qing Peng Song, Su Hua Kou, Jian Hua Lang, Jin Feng Sun, Spectroscopic Parameter and Molecular Constant Investigations on Low-Lying States of BeF Radical, Int. J. Mol. Sci., 2012, 13, 2501-2514. DOI: 10.3390/ijms13022501.

[2] M. Pelegrini, C.S. Vivacqua, O. Roberto-Neto, F.R. Ornellas, F.B.C. Machado, Radiative Transition Probabilities and Lifetimes for the Band Systems  of the Isovalent Molecules BeF, MgF and CaF, Braz. J. Phys., 2005, 35, 950–956.

[3] F.R. Ornellas, F.B.C. Machado, O. Roberto-neto, A Theoretical Study of the Molecules BeF and BeF+ in their Lowest-lying Electronic States, Mol. Phys., 1992, 77, 1169–1185. DOI: 10.1080/00268979200103051.

[4] F.A. Jenkins, Fine Structure of the Beryllium Fluoride Bands, Physical Review., 1930, 35, 315-335.

[5] D.L. Hildenbrand, E. Murad, Mass-spectrometric Determination of the Dissociation Energy of Beryllium Monofluoride, J. Chem. Phys., 1966, 44, 1524–1529.

[6] M. Farber, R.D. Srivastava, Dissociation Energies of BeF and BeCl and the Heat of Formation of BeClF, J. Chem. Soc. Faraday Trans., 1974, 70, 1581–1589.

[7] G. Herzberg, Molecular Spectra and Molecular Structure, Spectra and Diatomic Molecules, Van Nostrand Reinhold, New York, NY, USA, 1950, volume I, p. 402.

[8] K.P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure, Constants of Diatomic Molecules, Van Nostrand Reinhold, New York, NY, USA, 1979, volume IV, p. 76.

[9] D.R.Bates, The intensity distribution in the nitrogen band systems emitted from the earth’s upper atmosphere, Proc. R. Soc., 1949, A196, 217. DOI: 10.1098/rspa.1949.0025.

[10] R. Shanmugavel, P. Sriramachandran, Astrophysically useful Radiative Transition Parameters for the  and  Systems of Zirconium Oxide, Astrophys. Space. Sci., 2011, 332, 257–262. DOI 10.1007/s10509-010-0516-6.

[11] R. Shanmugavel, S.P. Bagare, N. Rajamanickam, Astrophysically Useful Parameters for Certain Band Systems of BeH, BeD and BeT Molecules, Serb. Astron. J., 2006, 173, 83-87. DOI: 10.2298/SAJ0673083S.

[12] P. Sriramachandran, R. Shanmugavel, S.P. Bagare, N. Rajamanickam, Identification of SrF molecular lines in the spectrum of sunspot umbra, Astrophys. Space. Sci., 2009, 323, 41-49. DOI: 10.1007/s10509-009-0043-5.

https://mmse.xyz/Papers/vol-9-2017/part2/ID2017032407.pdf

Creative Commons Licence
Mechanics, Materials Science & Engineering Journal by Magnolithe GmbH is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at www.mmse.xyz.