Study of Charge Density and Crystal Structure of co-doped LaCrO3 System

<- Back to I. Materials Science Vol. 9 Iss. 2

Cite the paper

N. Thenmozhi, S.Sasikumar, R. Saravanan, Yen-Pei Fu (2017). Study of Charge Density and Crystal Structure of co-doped LaCrO3 System. Mechanics, Materials Science & Engineering, Vol 9. doi:10.2412/mmse.99.30.568

Authors: N. Thenmozhi, S.Sasikumar, R. Saravanan, Yen-Pei Fu

ABSTRACT. The co-doped lanthanum chromite system of (La0.8Ca0.2)(Cr0.81Co0.1Cu0.09)O3 sample has been prepared by high temperature solid state reaction technique. The synthesized sample has been characterized for structural, optical, morphological and magnetic properties by powder XRD, UV-vis, SEM/EDS and VSM. Structural analysis revealed that the prepared sample has orthorhombic structure with space group of Pnma. The bonding between the atoms has been analyzed using maximum entropy method (MEM). The bond lengths and mid bond electron densities have been estimated from the 1D electron density profiles. From the optical absorption spectra, the energy band gap of the sample has been calculated as 2.035 eV. From the SEM image, the average particle size of the synthesized sample is 235nm. EDS spectrum of the synthesized sample confirms its purity. Room temperature M-H curves obtained from VSM measurements exhibit predominant antiferromagnetic ordering of the prepared sample. The co-doped LaCrO3 compounds have been primarily used as cathode as well as inter-connector coating materials in solid oxide fuel cells (SOFC).

Keywords: X-ray diffraction, electron density, co-doping, scanning electron microscopy, magnetic property.

DOI 10.2412/mmse.99.30.568

References

[1] D. B. Meadowcroft, Some properties of strontium-doped lanthanum chromite, Brit. J. Appl. Phys., 2, 1225 (1969). DOI: http://dx.doi.org/10.1088/0022-3727/2/9/304

[2] S. Ifrah, A. Kaddomi, P. Gelin, G. Bergeret, On the effect of La-Cr-O phase composition on diesel soot catalytic combustion, Catal. Commun., 8, 2257 (2007). DOI: http://dx.doi.org/10.1016/j.catcom.2007.04.039

[3] A. Suvorov and A. P. Shevchik, A Heating Module Equipped with Lanthanum Chromite-Based Heaters, Refract. Ind. Ceram., 45, 196 (2004). DOI:10.1023/B:REFR.0000036729.24986.e3

[4] W. L. David, F. C. Montgomery, T. R. Armstrong, NO-selective” NOx sensing elements for combustion exhausts, Sens. Actuators B 111-112, 84 (2005). DOI:http://dx.doi.org/10.1016/j.snb.2005.06.043.

[5] F. Heydari, A. Maghsoudipour, M. Alizadeh, Z. Khakpour and M. Javaheri, Synthesis and evaluation of effective parameters in thermal expansion coefficient of Ln0.6Sr0.4Co0.2M0.8O3−δ (Ln = La,Nd and M = Mn,Fe) perovskite oxide, Bull. Mater. Sci. 38, 1009 (2015). DOI:10.1007/s12034-015-0942-8

[6] G. Setz Luiz Fennando, H. Sonia Regina, Mello Castanho, Determining the Lanthanum Chromite Zeta Potential in Aqueous Media, Mater. Sci. Forum, 660-661, 1145 (2010). DOI:10.4028/www.scientific.net/MSF.660-661.1145

[7] M. Suzuki, H. Sasaki, A. Kajimura, Oxide ionic conductivity of doped lanthanum chromite thin film interconnectors, Solid State Ionics, 96, 83 (1997). DOI:http://dx.doi.org/10.1016/S0167-2738(97)00007-6

[8] Yen Pei Fu, Hsin-Chao Wang, Shao-Hua Hu, Kok-Wan Tay, Electrical conduction behaviors of isovalent and acceptor dopants on B site of (La0.8Ca0.2)CrO3-δ peroskites, Ceram. Int., 37 2127 (2011). DOI: 10.1016/j.ceramint.2011.02.028

[9] H.M. Rietveld, A Profile Refinement Method for Nuclear and Magnetic structures, J. Appl. Crystallogr. 2 65 (1969). DOI: http://dx.doi.org/10.1107/S0021889869006558

[10] V. Petricek, M. Dusek, L. Palatinus, Jana 2006, The Crystallographic Computing System, Institute of Physics, Prague, Czech Republic, (2006).

[11] K.P. Ong, Peter Blaha, Ping Wu, Origin of the light green color and electronic ground state of LaCrO3, Phys. Rev. B, 77, 073102 1 (2008). DOI: https://doi.org/10.1103/PhysRevB.77.073102

[12] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst., A 32, 751 (1976). DOI: https://doi.org/10.1107/S0567739476001551

[13] J. Tauc, R. Grigorvici, A. Vancu, Optical Properties and Electronic Structure of Amorphous Germanium, Phys. Status Solidi (b), 15, 627 (1966). DOI: http://dx.doi.org/10.1002/pssb. 19660150224

[14] J.P. Gonjal, R. Schmidt, J.J. Romero, D.U. Amador and E. Moran, Microwave-Assisted Synthesis, Microstructure, and Physical Properties of Rare-Earth Chromites, Inorg. Chem., 52, 313 (2013). DOI:http://dx.doi.org/10.1021/ic302000j

[15] R. Shukla, J. Manjanna, A.K. Bera, S.M. Yusuf, and A.K. Tyagi, La1-xCexCrO3 (0.0 ≤x≤1.0): A New Series of Solid Solutions with Tunable Magnetic and Optical Properties, Inorg. Chem. 48, 11691 (2009). DOI: 10.1021/ic901735d

[16] A. D. Ruben, I. Fugio, Superfast program PRIMA for the Maximum Entropy Method, Advanced Materials Laboratory, National Institute for Material Science, Ibaraki, Japan (2004), 3050044.

[17] K. Momma, F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis, J. Applied Crystallogr. 41 653 (2008) DOI:http://dx.doi.org/10.1107 / S0021889808012016

[18] C.S. Montross, Elastic Modulus Versus Bond Length in Lanthanum Chromite Ceramics, J. Eur. Ceram. Soc., 18, 353 (1997). DOI:http://dx.doi.org/10.1016/S0955-2219(97)00143-X

[19] S. Natsuko, F Helmer, C. Hauback, Structural, Magnetic and thermal properties of La1-tCatCrO3, J. of Solid state Chem., 121, 202 (1996). DOIi:10.1006/jssc.1996.0029

https://mmse.xyz/Papers/vol-9-2017/part2/ID2017032408.pdf

Creative Commons Licence
Mechanics, Materials Science & Engineering Journal by Magnolithe GmbH is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at www.mmse.xyz.