Synthesis and Electrochemical Studies of ReO3 Type Phase Nb3O7F

<- Back to I. Materials Science Vol. 14

Read full-text

Cite the paper

Saritha, D

Synthesis and Electrochemical Studies of ReO3 Type Phase Nb3O7F Journal Article

Mechanics, Materials Science & Engineering, 14 (1), 2018, ISSN: 2412-5954.

Abstract | Links | BibTeX

Authors: D. Saritha

ABSTRACT. In latest era, explore for alternative materials to carbonaceous negative electrodes working at higher potential in lithium ion batteries is given enormous significance to avoid lithium plating and electrolyte decomposition. Niobium based oxides show enhanced results as choice to carbonaceous anodes and also Nb5+/4+ redox couple working at approximately 1.5V vs. lithium.The redox potential of the niobium metal ion (~1.5V) and the structure of Nb3O7F encourage us lithium insertion studies. Nb3O7F compound has been synthesized through a simple solid state method to explore as anode material. A structural and electrochemical property of this compound is studied in detail.The charge-discharge curves are obtained galvanostatically at C/5 rate. In first discharge step, 5.3 Li can be inserted into four step process between 3.0 – 1.0 V with a specific capacity of 350 mAhg-1. Four plateaus are observed at 1.65, 1.3,1.2 and 1.1V. During charge 1.3 Li can be extracted with an irreversible capacity loss. The total first-charge capacity is 86 mAhg-1 corresponding to the extraction of 1.3 Li. These cells show a reversible capacity 86 mAhg-1 after 25 cycles. The detailed results will be described and discussed.

Keywords: ReO3 structure, electrochemical studies, Nb3O7F

DOI 10.2412/mmse.12.100.949

References

[1] R.J.Cava, A.Santoro, D.W.Murphy, S.Zahurak, and R.S.Roth (1981), Structural aspects of lithium insertion in oxides: LixReO3 and Li2FeV3O8, Solid State Ionics, 5, 323-326, DOI 10.1016/0167-2738(81)90258-7

[2] D.W. Murphy (1986), Insertion reactions in electrode materials, Solid State Ionics, 18-19, 847-851, DOI 10.1016/0167-2738(86)90274-2

[3] A.Martı’nez-dela Cruz, M. Torres-Martı’nez Leticia, F. Garcı’a Alvarado, E. Mora’n, M.A. Alario-Franco (1998), Formation of new tungsten bronzes: electrochemical zinc insertion in WO3, J. Mater. Chem, 8(8), 1805-1807, DOI 10.1039/a801461b

[4] R.J.Cava, D.W.Murphy, S.M.Zahurak (1983), Lithium insertion in Wadsley-Roth Phases Based on Niobium Oxide, J. Electrochem. Soc, 130, 2345-2351, DOI 10.1149/1.2119583

[5] R.J.Cava, D.W.Murphy, E.A.Rietman, S.M. Zahurak, H.Barz (1983), Lithium insertion, electrical conductivity and chemical substitution in various crystallographic shear structures, Solid State Ionics, 9-10, 407-411, DOI 10.1016/0167-2738(83)90267-9

[6] L.Permer (1992), Li-inserted Nb3O7F and its thermal decomposition products studied by high-resolution electron microscopy and X-ray powder diffraction, J. Solid State Chem, 97, 105–114, DOI 10.1016/0022-4596(92)90014-M

[7] J.F.Colin, V.Pralong, V.Caignaert, M. Hervieu, B. Raveau (2006), A new layered titanoniobate LiTiNbO5: Topotactic synthesis and electrochemistry versus lithium, Inorg. Chem, 45(18), 7217-7223, DOI 10.1021/ic060801o

[8] J.F.Colin, V. Pralong, M. Hervieu, V. Caignaert and B. Raveau (2008), Lithium insertion in an oriented nonporous oxide with a tunnel structure: Ti2Nb2O9, Chem. Mater, 20(4), 1534-1540, DOI 10.1021/cm702978g

[9] M. Anji Reddy and U.V.Varadaraju (2008), Facile insertion of lithium into nanocrystalline AlNbO4 at room temperature, Chem. Mater, 20(14), 4557-4559, DOI 10.1021/cm801194b

[10] A.L. Viet, M.V. Reddy, R. Jose, B.V.R.Chowdari, S.Ramakrishna (2009), Nanostructured Nb2O5 polymorphs by electrospinning for rechargeable lithium batteries, J Phys Chem C, 114(1), 664, DOI 10.1021/jp9088589

[11] X.J.Wang, F. Krumeich, M. Wcrle, R. Nesper, L. Jantsky, H. Fjellva (2012), Niobium(V) oxynitride: synthesis, characterization, and feasibility as anode material for rechargeable lithium-ion batteries, Chem Eur J, 18(19), 5970, DOI 10.1002/chem.201102653

[12] L.P.Wang, L.H. Yu, R. Satish, J.X.Zhu, Q.Y.Yan, M. Srinivasan, Z.C. Xu (2014), High-performance hybrid electrochemical capacitor with binder-free Nb2O5@graphene,RSC Adv,4(70), 373-389, DOI 10.1039/C4RA06674J

[13] P.Arunkumar, G.Ashisha, B.Babu, S. Sarang, A. Suresh, C.H.Sharma, M. Thalakulam, M.M.Shaijumon (2015), Nb2O5/graphene nanocomposites for electrochemical energy storage, RSC Adv, 5(74), 599-97, DOI 10.1039/C5RA07895D

[14] E.Lim, H. Kim, C.Jo, J.Chun, K.Ku, S.Kim, H.I.Lee, I.S.Nam, S.Yoon, K.Kang, J.Lee (2014), Advanced hybrid supercapacitor based on a mesoporous niobium pentoxide/carbon as high-performance anode, ACS Nano, 8(9), 8968, DOI 10.1021/nn501972w

[15] Z. Jian, X.Lu, Z.Fang, Y.S.Hu, J.Zhou, W.Chen, L.Chen (2011), LiNb3O8 as a novel anode material for lithium-ion batteries, Electrochem Commun, 13(10), 1127, DOI 10.1016/j.elecom.2011.07.018

[16] X.Wu, J.Miao, W.Han, Y.S. Hu, D. Chen, J.S.Lee, J. Kim, L.Chen (2012), Investigation on Ti2Nb10O29 anode material for lithium-ion batteries, Electrochem Commun, 25, 39, DOI 10.1016/j.elecom.2012.09.015

[17] C.Jo, Y.Kim, J. Hwang, J. Shim, J.Chun, J.Lee (2014), Block copolymer directed ordered mesostructured TiNb2O7 multimtallic oxide constructed of nanocrystals as high power Li-ion battery anodes, Chem Mater, 26(11), 3508, DOI 10.1021/cm501011d

[18] J.T.Han, D.Q.Liu, S.H.Song, Y.Kim, J.B. Goodenough (2009), Lithium ion intercalation performance of niobium oxides: KNb5O13 and K6Nb10.8O30, Chem Mater, 21(20), 4753, DOI 10.1021/cm9024149

[19] I.Pinus, M. Catti, R.Ruffo, M.M. Salamone, C.M.Mari (2014), Neutron diffraction and electrochemical study of FeNb11O29/Li11FeNb11O29 for lithium battery anode applications, Chem Mater, 26(6), 2203, DOI 10.1021/cm500442j

[20] X.Gao, C.A.J.Fisher, Y.H. Ikuhara, Y. Fujiwara, S.Kobayashi, H. Moriwake, A.Kuwabara, K. Hoshikawa, K. Kohama, H. Iba, Y.Ikuhara (2015), Cation ordering in a-site-deficient Li-ion conducting perovskites La(1-x)/3LixNbO3, J Mater Chem A, 3(7), 3351, DOI 10.1039/C4TA07040B

[21] J.T.Han, M.V. Reddy, S. Madhavi, G.V. Subba Rao, B.V.R. Chowdari (2006), Metal oxyfluorides TiOF2 and NbO2F as anodes for Li-ion batteries, Journal of Power Sources, 162, 1312–1321, DOI 10.1016/j.jpowsour.2006.08.020

Creative Commons Licence
Mechanics, Materials Science & Engineering Journal by Magnolithe GmbH is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at www.mmse.xyz.