<- Back to II. Mechanical Engineering & Physics Vol. 5
Cite the paper
Amelia Carolina Sparavigna (2016). On the Boltzmann Equation of Thermal Transport for Interacting Phonons and Electrons. Mechanics, Materials Science & Engineering, Vol 5. doi:10.13140/RG.2.1.2824.0885
Authors: Amelia Carolina Sparavigna
ABSTRACT. The thermal transport in a solid can be determined by means of the Boltzmann equations regarding its distributions of phonons and electrons, when the solid is subjected to a thermal gradient. After solving the coupled equations, the related thermal conductivities can be obtained. Here we show how to determine the coupled equations for phonons and electrons.
Keywords: Boltzmann Equation, thermal conductivity, phonons and electrons
DOI 10.13140/RG.2.1.2824.0885
References
[1] Omini, M., & Sparavigna, A. (1996). Beyond the isotropic-model approximation in the theory of thermal conductivity. Physical Review B, 53(14), 9064-9073. DOI: 10.1103/physrevb.53.9064
[2] Omini, M., & Sparavigna, A. (1997). Heat transport in dielectric solids with diamond structure. Nuovo Cimento D Serie, 19, 1537.
[3] Omini, M., & Sparavigna, A. (1995). An iterative approach to the phonon Boltzmann equation in the theory of thermal conductivity. Physica B: Condensed Matter, 212(2), 101-112. DOI: 10.1016/0921-4526(95)00016-3
[4] Omini, M., & Sparavigna, A. (1997). Effect of phonon scattering by isotope impurities on the thermal conductivity of dielectric solids. Physica B: Condensed Matter, 233(2), 230-240. DOI: 10.1016/s0921-4526(97)00296-2
[5] Sparavigna, A. C. (2016). The Boltzmann equation of phonon thermal transport solved in the relaxation time approximation – I – Theory. Mechanics, Materials Science & Engineering Journal, (3), 1-13. DOI: 10.13140/RG.2.1.1001.1923
[6] Sparavigna, A. C. (2016). The Boltzmann equation of phonon thermal transport solved in the relaxation time approximation – II – Data analysis. Mechanics, Materials Science & Engineering Journal, 2016(3), 1-10. DOI: 10.13140/RG.2.1.2026.4724
[7] Srivastava, G. P. (1990). The physics of phonons. CRC Press.
[8] Kittel, C., & Fong, C. Y. (1963). Quantum theory of solids (Vol. 33). New York: Wiley.
[9] Ziman, J. M. (1960). Electrons and phonons: the theory of transport phenomena in solids. Oxford University Press.
[10] Srivastava, S. K., & March, N. H. (Eds.). (1995). Condensed Matter – Disordered Solids. World Scientific.
[11] Peierls, R. (1935). Quelques propriétés typiques des corps solides. In Annales de l’institut Henri Poincaré, 5(3), 177-222.
[12] Klemens, P. G. (1951). The thermal conductivity of dielectric solids at low temperatures (theoretical). In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 208(1092), 108-133. DOI: 10.1098/rspa.1951.0147
[13] Klemens, P. G. (1958). Thermal conductivity and lattice vibrational modes. Solid State Physics, 7, 1-98. DOI: 10.1016/s0081-1947(08)60551-2
[14] Callaway, J. (1959). Model for lattice thermal conductivity at low temperatures. Physical Review, 113(4), 1046-1051. DOI: 10.1103/physrev.113.1046
[15] Krumhansl, J. A. (1965). Thermal conductivity of insulating crystals in the presence of normal processes. Proceedings of the Physical Society, 85(5), 921-9130. DOI: 10.1088/0370-1328/85/5/310
[16] Srivastava, G. P. (1976). Calculation of lattice thermal conductivity of Ge from 4 to 900 K. Philosophical Magazine, 34(5), 795-809. DOI: 10.1080/14786437608222052
[17] Srivastava, G. P. (1980). Phonon conductivity of insulators and semiconductors. Journal of Physics and Chemistry of Solids, 41(4), 357-368. DOI: 10.1016/0038-1098(80)90461-5
[18] Parrott, J. E. (1971). Generalization of the Callaway thermal conductivity equation. Physica Status Solidi (b), 48(2), K159-K161. DOI: 10.1002/pssb.2220480266
[19] Guyer, R. A., & Krumhansl, J. A. (1966). Solution of the linearized phonon Boltzmann equation. Physical Review, 148(2), 766-778. DOI: 10.1103/physrev.148.766
[20] Srivastava, G. P. (1980). Phonon conductivity of insulators and semiconductors. Journal of Physics and Chemistry of Solids, 41(4), 357-368. DOI: 10.1016/0038-1098(80)90461-5
[21] Omini, M., & Sparavigna, A. (1993). Thermal conductivity of rare gas crystals the role of three-phonon processes. Philosophical Magazine B, 68(5), 767-785. DOI: 10.1080/13642819308220158
[22] Jancel, R. (2013). Foundations of classical and quantum statistical mechanics: International Series of Monographs in Natural Philosophy (Vol. 19). Elsevier.
[23] Gurevich, V. L. V. (1986). Transport in phonon systems. Amsterdam, North-Holland.
[24] Mizutani, U. (2001). Introduction to the Electron Theory of Metals, Cambridge University Press.
[25] Barbero, D., & Omini, M. (1984). Vacancy formation volume of sodium, aluminium and argon. Il Nuovo Cimento D, 3(3), 533-560. DOI: 10.1007/bf02457768
[26] Omini, M. (1994). Phonon-phonon interaction and phonon drag in potassium at low temperatures. Philosophical Magazine B: Physics of Condensed Matter, 69(6), 1197-1215. DOI: 10.1080/01418639408240189
[27] Sparavigna, A. C. Appunti di un seminario del Professor Omini sullo pseudopotenziale (unpublished).
[28] Ziman, J. M. (1975). I principi della teoria dei solidi. Tamburini Editore.
[29] Ponasso, L. & Sparavigna, A. (2001). Determinazione del trasporto termico nei metalli con approccio iterativo all’equazione di Boltzmann. In: LXXXVII Congresso Nazionale Società Italiana di fisica, Milano, Milano, 24-29 Settembre 2001. Page 71.
Mechanics, Materials Science & Engineering Journal by Magnolithe GmbH is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at www.mmse.xyz.