Photo Degradation in Dye-Sensitized Solar Cells

<- Back to I. Materials Science Vol. 1

Cite the paper

T. J. Abodunrin, M. L. Akinyemi, A. O. Boyo & J. A. Olugbuyiro (2015). Photo Degradation in Dye-Sensitized Solar Cells. Mechanics, Materials Science & Engineering, Vol 1, pp. 37-47,  doi:10.13140/RG.2.1.3208.0400

Authors: T. J. Abodunrin, M. L. Akinyemi, A. O. Boyo, J. A. Olugbuyiro

ABSTRACT. Mesoporous TiO2 of 20nm diameter is prepared in-tandem with organic dyes and based on Fluorine –doped SnO2 (FTO), conducting base is produced by hydrothermal process. The prepared mesoporous Cola Acuminata (C.acuminata), Lupinus Arboreus (L.arboreus) and Bougainvillea Spectabilis (B.spectabilis) films (0.16 cm2) are applied; individually and in combination as interfacial layer in-between nanocrystalline TiO2 (NC- TiO2) and the FTO anode in the dye-sensitized solar cell (DSSC). Absorbance index (A.I) of all three dyes was studied within wavelength range 200-900 nm for a period of 11 months, equivalent to 352 sun exposure. C.acuminata had A.I value 4.00 that decreased to 2.32 under exposure to AM1.5 global conditions. B.spectabilis A.I was 1.19 but decreased to 0.520 within same period of study. Combination of C.acuminata and B.spectabilis gave A.I value 1.40, dye cocktails of C.acuminata, B.spectabilis and L.arboreus gave 2.00 A.I value for same wavelength range. A UV/Vis photo spectrometer was used to determine the prominent peaks and absorbance at such wavelengths. This exponential relationship is subject of our explorative study.

Keywords: degradation, dye-sensitized solar cells, absorbance index

DOI 10.13140/RG.2.1.3208.0400


[1] B. O’Regan and M. Gratzel, Nature (London) 353, 737 (1991).

[2] M. Gratzel, Nature (London) 414, 338 (2001).

[3] M. Durr, A. Bamedi, A. Yasuda, and G. Nelles, Appl. Phys. Lett. 84, 3397 (2004).

[4] W. U. Huynh, J. J. Dittmer and, A. P. Alivisatos, Science 295, 2425 (2002).

[5] M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Compte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, and M. Gratzel, J.Am. Chem. Soc. 123, 1613 (2001).

[6] D. Gebeyehu, C. J. Brabec, and N. S. Saiciftci, Thin Solid Films 403, 271 (2002).

[7] K. Keis, E. Magnusson, H. Lindstrom, S. E. Lindquist, and A. Hagfeldt, Sol. Energy Mater. Sol. Cells 73, 51 (2002).

[8] Z. S. Wang, C.H. Huang, Y.Y. Huang, Y.J. Hou, P.H. Xie, B.W. Zhang, and H.M. Cheng. Chem. Mater. 13, 678 (2001).

[9] J. Xia, N. Masaki, K. Jiang, S. Yanagida, Chem. Commun. 138 (2007).

[10] B. Peng, G. Jungmann, C. Jäger, D. Haarer, H.W. Schmidt, M. Thelakkat, Coord. Chem.Rev. 248, 1479 (2004).

[11] K. Zhu, E. A. Schiff, N. -G. Park, J. V. D. Lagemaat, A. J. Frank, Appl. Phys. Lett. 80, 685, (2002).

[12] A. Zaban, M. Greenshtein, J. Bisquetr, Chem. Phys. Chem 4, 859 (2003).

[13] A. Hagfeldt, M. Grätzel, Chem, Rev. 95, 49 (1995).

[14] A. Kumar, P. G. Santangelo, N. S. Lewis, J. Phys. Chem. 96, 834 (1992).

[15] D.K. Schroder, ‘‘Surface Voltage and Surface Photovoltage: history, theory and applications’’, Meas. Sci. technol. 12, (2001), R 16 – R 31.

[16] L. Peter, ‘‘Infrared and Raman Characteristic Group Frequencies: Tables and Charts’’, 18 (2011).

[17] I. Reiss, ‘‘what does a voltmeter measure?’’ Solid State Ionics, 95, 325, 1197.

[18] D. Chattopadhyay, ‘‘Electronics (Fundamentals and Applications)’’.

[19] B. Park, Q. Shen, Y. Ogomi, S.S. Pandey, T. Toyoda, S. Hayase, ECS Journal of Solid State Science and Technology. 2, 1 Q6 – Q11 (2013).

[20] J. Vlachopoulos, Particle Coalescence (sintering) in Polymer Processing and Beyond, PPS (2014).

Creative Commons Licence
Mechanics, Materials Science & Engineering Journal by Magnolithe GmbH is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at