Role of Ionization Energies in Tri Hydride Superconductors

<- Back to I. Materials Science Vol. 13

Read full-text

Cite the paper

K. Subbaravamma, ; Kaleemulla, S; Rao, Venugopal G

Role of Ionization Energies in Tri Hydride Superconductors Journal Article

Mechanics, Materials Science & Engineering, 13 (1), 2017, ISSN: 2412-5954.

Abstract | Links | BibTeX

Authors: K. Subbaravamma, S. Kaleemulla, G. Venugopal Rao

ABSTRACT. Hydrogen dense materials of the form AH3 (where A can be Al, Sc, Ga, S, Cr, Se, Y, La, P) are gaining interest with respect to study high temperature superconductivity at pressure with the reach of available techniques. In the present work, we have used first principle calculations to correlate the ionization energies and the superconducting critical temperatures for the metal hydrides. Using a linear regression, a straight line fit of the correlation implies a certain limit for sum of the ionization energy needed for superconductivity to occur. Alkali C60 superconductors shown similar nature with ionization energy.

Keywords: superconductivity, tri hydrides, ionization energies, critical temperature, high pressure

DOI 10.2412/mmse.45.73.186


[1] N.W. Ashcroft (1968), Metallic Hydrogen: A High-Temperature Superconductor? Phys. Rev. Lett. 21, 1748.

[2] H.G. Drickamer (1961), Optical studies at high pressure, in F.P. Bundy, W.R. Hibbard Jr., H. M. Strong Eds., Progress in very high pressure research, pp. 16, John Wiley & Sons, Inc., New York.

[3] Florian Hetfleisch, Marco Stepper, Hans-Peter Roeser, Artur Bohr, Juan Santiago Lopez, Mojtaba Mashmool and Susanne Roth, Physica C 513 (2015) 1.

[4] H.P. Roeser, D.T. Haslam, J.S. Lopaz, M. Stepper, M.F. von Schoenermark, F.M. Huber, A.S. Nikoghosyan (2011), Electronic Energy Levels in High-Temperature Superconductors, J. Supercond. Nov. Magn., 24(5), 1443-1451, DOI 10.1007/s10948-010-0850-5

[5] D.Y. Kim, R.H. Scheicher, H. Mao, T.W. Kang, R. Ahuja (2010), General trend for pressurized superconducting hydrogen-dense materials, Proc. Natl. Acad. Sci., 107 (7), 2793-2796, DOI 10.1073/pnas.0914462107

[6] Cristina Buzea and Kevin Robbie, Supercond. Sci. Technol. 18 (2005) R1-R8.

[7] A. Drozdov, M.I. Eremets, I.A. Troyan, arXiv:1508.06224 (2015), Superconductivity above 100 K in PH3 at high pressures.

[8] S. Zhang, Y. Wang, J. Zhang, H. Liu, X. Zhong, H. Song, G. Yang, L. Zhang, Y. Ma (2015), Phase Diagram and High-Temperature Superconductivity of Compressed Selenium Hydrides, Scientific Reports 5, 15433, DOI 10.1038/srep15433

[9] S. Yu, X. Jia, G. Frapper, D. Li, A.R. Oganov, Q. Zeng, L. Zhang (2015), Pressure-driven formation and stabilization of superconductive chromium hydrides, Scientific Reports 5. 17764, DOI 10.1038/srep17764

[10] A.P. Durajski, R. Szczesniak, Superconducting state above the boiling point of liquid nitrogen in the GaH3 compound, Supercond. Sci. Technol. 27 (2014) 11501, DOI 10.1088/0953-2048/27/1/015003.

[11] A. Drozdov, M.I. Eremets, I.A. Troyan, V. Ksenofontov, S.I. Shylin (2015), Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system, Nature, 525  73-76, DOI 10.1038/nature14964

[12] D.Y. Kim, R.H. Scheicher, R. Ahuja (2009), Predicted high-temperature superconducting state in the hydrogen-dense transition-metal hydride YH3 at 40 K and 17.7 GPa, Phys. Rev. Lett. 103 (7) 077002, DOI 10.1103/PhysRevLett.103.077002

[13] I. Goncharenko, M.I. Eremets, M. Hanfland, J.S. Tse, M. Amboage, Y. Yao, I.A. Trojan (2008), Pressure-induced hydrogen-dominant metallic state in aluminum hydride, Phys. Rev. Lett. 100 (4), 045504, DOI 10.1103/PhysRevLett.100.045504

[14] A.P. Durajski, R. Szczesniak, Superconducting state above the boiling point of liquid nitrogen in the GaH3, compound, Supercond. Sci. Technol. 27, (2014) 015003, DOI 10.1088/09532048/27/1/015003

Creative Commons Licence
Mechanics, Materials Science & Engineering Journal by Magnolithe GmbH is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at