Sonochemical Method for Casting the Polymer Nanocomposites: A Mini Review

<- Back to I. Materials Science Vol. 15

Read full-text

Cite the paper

D. Arthisree, ; Joshi, Girish M

Sonochemical Method for Casting the Polymer Nanocomposites: A Mini Review Journal Article

Mechanics, Materials Science & Engineering, 15 , 2018, ISSN: 2412-5954.

Abstract | Links | BibTeX

Authors: D. Arthisree, Girish M. Joshi

ABSTRACT. The present nano science domain focussed on sample preparation and inhibition of chemical reaction achieved by several techniques based on the principle of cavitation process using ultrasonic frequency-sonochemical routes. The effect of sonochemical routes is highly advantageous in reaction methods such as triggering reaction pathways, inducing the speedy reaction of inter-particle collision. In polymers, high intensity ultrasound waves are used for the polymerization of monomers by step growth process. This review is an outlook of sonochemical approach for polymer nanocomposites, which follows the physics of ultrasonic frequency bands, chemical reactions and the properties of acoustic cavitation highly applicable for the development of modern target materials.

Keywords: ultrasonic dispersion, polymers, nanocomposites, high and low power, cavitation

DOI 10.2412/mmse.48.74.746

References

[1] Ficai, D., & Grumezescu, A. M. (Eds.). (2017). Nanostructures for Novel Therapy: Synthesis, Characterization and Applications. Elsevier.

[2] Suslick, K. S., & Price, G. J. (1999). Applications of ultrasound to materials chemistry. Annual Review of Materials Science, 29(1), 295-326.

 [3] Yazdani, S., Hatami, M., & Vahdat, S. M. (2014). The chemistry concerned with the sonochemical-assisted synthesis of CeO2/poly (amic acid) nanocomposites, DOI 10.3906/kim-1306-33

 [4] Li, Z., & Wang, Y. (2010). Characterization of polyaniline/Ag nanocomposites using H2O2 and ultrasound radiation for enhancing rate. Polymer Composites, 31(9), 1662-1668. DOI 10.1002/pc.20956

[5] Arthisree, D., & Joshi, G. M. (2017). Influence of graphene quantum dots on electrical properties of polymer composites. Materials Research Express, 4(7), 075045.

[6] Pandey, I., Arthisree, D., Sivakumar, A., & Joshi, G. M. (2017). Polymer Composites for Thermal Sensing Application14. DOI: 10.2412/mmse.2.26.724

 [7] Yang, D. A., Cho, H. Y., Kim, J., Yang, S. T., & Ahn, W. S. (2012). CO 2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method. Energy & Environmental Science, 5(4), 6465-6473. DOI: 10.1039/c1ee02234b

 [8] Snoussi, Y., Bastide, S., Abderrabba, M., & Chehimi, M. M. (2017). Sonochemical synthesis of Fe3O4@ NH2-mesoporous silica@ Polypyrrole/Pd: a core/double shell nanocomposite for catalytic applications. Ultrasonics Sonochemistry. DOI 10.1016/j.ultsonch.2017.10.021

 [9] Wang, J., Hu, Y., Song, L., & Chen, Z. (2004). Sonochemical preparation of nanocomposite of gamma-zirconium phosphate (γ-ZrP) and Cu 2 O/CuO embedded polyaniline. Solid state ionics, 167(3), 425-430. DOI 10.1016/j.ssi.2004.01.028

[10] Park, J. E., Atobe, M., & Fuchigami, T. (2005). Sonochemical synthesis of conducting polymer–metal nanoparticles nanocomposite. Electrochimica Acta, 51(5), 849-854. DOI 10.1016/j.electacta.2005.04.052

[11] Capelo-Martínez, J. L. (Ed.). (2009). Ultrasound in chemistry: analytical applications. John Wiley & Sons. ISBN-978-3-527-31934-3

[12] Arthisree, D., & Joshi, G. M. (2017). Study of polymer Graphene Quantum Dot nanocomposites. Journal of Materials Science: Materials in Electronics, 1-9. DOI 10.1007/s10854-017-6825-6

[13] Ramisetty, K. A., & Shyamsunder, R. (2011). Effect of ultrasonication on stability of oil in water emulsions. International Journal of Drug Delivery, 3(1).

[14] Lauterborn, W., & Ohl, C. D. (1997). Cavitation bubble dynamics. Ultrasonics sonochemistry, 4(2), 65-75. DOI 10.1007/978-3-319-38842-7

 [15] Mason, T. J., & Peters, D. (2002). Practical sonochemistry: Power ultrasound uses and applications. Woodhead Publishing.

 [16] Kowsari, E., & Faraghi, G. (2010). Ultrasound and ionic-liquid-assisted synthesis and characterization of polyaniline/Y 2 O 3 nanocomposite with controlled conductivity. Ultrasonics sonochemistry, 17(4), 718-725. DOI 10.1016/j.ultsonch.2009.11.018

[17] Mason, T. J. (2007). Sonochemistry and the environment–Providing a “green” link between chemistry, physics and engineering. Ultrasonics sonochemistry, 14(4), 476-483.

[18] Mason, T. J. (2000). Large scale sonochemical processing: aspiration and actuality. Ultrasonics sonochemistry, 7(4), 145-149.

[19] Sander, J. R., Bučar, D. K., Henry, R. F., Zhang, G. G., & MacGillivray, L. R. (2010). Pharmaceutical Nano‐Cocrystals: Sonochemical Synthesis by Solvent Selection and Use of a Surfactant. Angewandte Chemie International Edition, 49(40), 7284-7288. DOI 10.1002/anie.201002588

[20] Pantoja-Castro, M. A., Pérez-Robles, J. F., González-Rodríguez, H., Vorobiev-Vasilievitch, Y., Martínez-Tejada, H. V., & Velasco-Santos, C. (2013). Synthesis and investigation of PMMA films with homogeneously dispersed multiwalled carbon nanotubes. Materials Chemistry and Physics, 140(2), 458-464.

[21] Okitsu, K., Ashokkumar, M., & Grieser, F. (2005). Sonochemical synthesis of gold nanoparticles: effects of ultrasound frequency. The Journal of Physical Chemistry B, 109(44), 20673-20675. DOI 10.1021/jp0549374

Creative Commons Licence
Mechanics, Materials Science & Engineering Journal by Magnolithe GmbH is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at www.mmse.xyz.