Synthesis and Characterization of L-Alanine Functionalized Nano Hydroxyapatite

<- Back to I. Materials Science Vol. 13

Read full-text

Cite the paper

Jogiya, B V; Bhojani, A K; Solanki, P D; Jethva, H O; Joshi, M J

Synthesis and Characterization of L-Alanine Functionalized Nano Hydroxyapatite Journal Article

Mechanics, Materials Science & Engineering, 13 (1), 2017, ISSN: 2412-5954.

Abstract | Links | BibTeX

Authors: B.V. Jogiya, A.K. Bhojani, P.D. Solanki, H.O. Jethva, M. J. Joshi

ABSTRACT. Hydroxyapatite (HAP) – Ca10(PO4)6(OH)2 is a biomaterial exhibits excellent biocompatibility and finds numerous applications in clinical as well as industrial field. Synthetic HAP is extensively used in bone repair and bone augmentation by acting as fillers in the bone fractured sites. In the present study the synthesis of L-alanine functionalized HAP nanoparticles is carried out using the surfactant mediated approach and characterized by different techniques. The FTIR spectra revealed the presence of amino acid in the sample. The powder XRD study indicated no major change in the crystal structure and alternation of unit cell parameters. The average crystallite size of L-alanine functionalized HAP nanoparticles is smaller than the pure HAP nanoparticles. The TEM images indicated change in the morphology from needle to spherical with reduced size. The slight reduction in the thermal stability after functionalization by L-alanine is observed from the TGA.

Keywords: hydroxyapatite (HAP), L-alanine functionalization, XRD, FTIR, TEM, TGA

DOI 10.2412/mmse.58.20.50


[1] V.C. Gshalaev and A.C. Demirchan (2013), Hydroxyapatite: Synthesis, Properties and Applica-tions, Nova Science Publisher, New York, ISBN: 978-1-62081-934-0, p. 490.

[2] Frayssinet P., Bonnevialle P., Autefage J., Sharrock P., Bonel G. (1991) Bioartificial Hydroxy-apatite Implants. In: Langlais F., Tomeno B. (eds) Limb Salvage. Springer, Berlin, Heidelberg DOI 10.1007/978-3-642-75879-9_22

[3] A. A. Marino, R. O. Becker, C. H. Bachman (1967), Dielectric determination of bound water of bone. Phys. Med. Biol., 12 (3), 367-378.

[4] B. Palazzo, D. Walsh, M. Iafisco, E. Foresti, G. Martra, C. L. Bianchi, G. Cappeletti, N. Roveri (2009), Amino acid synergetic effect on structure, morphology and surface properties of biomimetic apatite nanocrystals, Acta Biomater, 5(4) 1241-1252, DOI 10.1016/j.actbio.2008.10.024

[5] R. Gonzalez-McQuire, J.-Y. Chane-Ching, E. Vignaud, A. Lebuglec, S. Mann (2004), Synthesis and characterization of amino acid-functionalized hydroxyapatite nanorods, J. Mater. Chem., 14 (1), 2277–2281, DOI 10.1039/B400317A

[6] W.K. Burton, N. Cabrera, F.C. Frank (1951), The growth of crystals and the equilibrium struc-ture of their surfaces, Phil. Trans. R. Soc. London, 243, 299- 358, DOI 10.1098/rsta.1951.0006

[7] F.F.A. Hollander, M. Plomp, C. J. Streek, W. J. P. Enckevort (2001), A two-dimensional Hart-man-Perdok analysis of polymorphic fat surfaces observed with atomic force microscopy, Surf. Sci. 471 (1), 101-113.

Creative Commons Licence
Mechanics, Materials Science & Engineering Journal by Magnolithe GmbH is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at