<- Back to I. Materials Science Vol. 17

Read full-text

Cite the paper

Mund, Abhishek; Pattanayak, Bikash; J.S., Jayakumar; Parashar, Kajal; Parashar, S K S


Mechanics, Materials Science & Engineering, 17 , 2018, ISSN: 2412-5954.

Abstract | Links | BibTeX

Authors: Abhishek Mund, Bikash Pattanayak,  Jayakumar J.S., Kajal Parashar,  S.K.S. Parashar

ABSTRACT. It is interesting to investigate the mechanical response of beam under impact load. In this study, the dynamical deformation of an I-sectional cantilever beam is taken into consideration by applying an object falling and the simplified theoretical solution derived from the conservation of energy during impact and the finite element solution obtained by beam element technique are respectively obtained. The comparison is made to show the difference of them. Besides, the effect of impact duration in the finite element simulation is investigated to provide guidance to the implementation of finite element analysis for such impact problem.

Keywords: LPSA, thermal conductivity, heat transfer, nanofluids

DOI 10.2412/mmse.81.69.42


[1] He, Y., Jin, Y., Chen, H., Ding, Y., Cang, D., Lu, H. (2007). Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanofluids flowing upward through a vertical pipe. International Journal of Heat Mass Transfer, 2272-2281.

[2] Murshed, S., Leong, K., Yang, C. (2005). Enhanced thermal conductivity of TiO2-Water based nanofluids. International journal in Thermal Science, 367-373.

[3] Das S. K., Choi S. U., Yu W, Pradeep T, Nanofluid science and technology, Wiley – Interscience Hoboken (2008).

[4] Haddad, Z., Abid, C., Oztop, H.F., Mataoui, A. (2014). A review on how the researchers prepare their nanofluids. International Journal of Thermal Sciences, 76, 168-189. doi:10.1016/j.ijthermalsci.2013.08.010

[5] Suresh, S., Selvakumar, P., Chandrasekar, M., Raman, V. S. (2012). Experimental studies on heat transfer and friction factor characteristics of Al2O3/water nanofluid under turbulent flow with spiralled rod inserts. Chemical Engineering and Processing: Process Intensification,53,24-30.doi:10.1016/j.cep.2011.12.013

[6] Beck, M. P., Sun, T., Teja, A. S. (2007). The thermal conductivity of alumina nanoparticles dispersed in ethylene glycol. Fluid Phase Equilibria, 260(2), 275-278. DOI:10.1016/j.fluid.2007.07.034

[7] Sharma, K., Sundar, L. S., Sharma, P. (2009). Estimation of heat transfer coefficient and friction factor in the transition flow with low volume concentration of Al2O3 nanofluid flowing in a circular tube and with twisted tape insert. International Communications in Heat and Mass Transfer, 36(5), 503-507. DOI: 10.1016/j.icheatmasstransfer. 2009.02.011

[8] Rajput, N. (2005). Methods of Preparation of nanoparticles-A Review. International Journal of Thermal Science, 367-373.

[9] B., Sharma, S., Gupta, S. M. (2016). Preparation and evaluation of stable nanofluids for heat transfer application – A Review. Experimental Thermal and Fluid Science, 202-212.

[10] Pak, B., Cho, Y. (1998), Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer, 151-170.

[11] Das, S. K., Putra. N., Thiesen. P., Roetzel. W. (2003). Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids. Journal of Heat Transfer, 125(4), 567. DOI: 10.1115/1.1571080

[12] Kothandaraman, C., Subramanyan, S. (2014). Heat and Mass transfer data book. New age international publishers.

[13] Boungirno, J. (2006). Convective Heat transfer enchancement in nanofluids. Heat and Mass transfer Proceddings, 2417-2423.

[14] Yang, L., Du, K. (2017). A Comprehensive review on heat transfer characteristics of TiO2 nanofluids. International Journal of heat and mass transfer, 11-31.

[15] Bruggeman, D. (1953). Dielectric constant and conductivity of mixtures of isotropics materials. Ann. Physics, 240-250.

[16] Yang, L., Xu, J., Du, K., Zhang, X. (2017). Recent development on viscosity and thermal conductivity of nanofluids. Powder Technology, 317, 348-369. DOI:10.1016/j.poetec.2017.04.061

[17] Incropera F. P., Lavine A. S., DeWitt, D.P. (2011) Fundamentals of Heat and mass transfer. John Wiley & Sons Incorporated.

[18] Sundar, L. S., & Sharma, K. V. (2010). Turbulent Heat Transfer and Friction Factor of Al2O3 nanofluid in a Circular Tube with twisted tape inserts. International Journal of Heat and Mass Transfer, 15(4), 1409-1416. DOI: 10.1615/jenhheattransf.v15.i4.50

[19] Ratheesh, R. (2013). Experimental analysis on heat transfer enhancement of double pipe heat exchanger using aluminium oxide – water nanofluid and baffled twisted tape inserts. Dissertation.

[20] Xuan, Y., & Roetzel, W. (2000). Conceptions for heat transfer correlation of nanofluids. International Journal of Heat and Mass Transfer, 43(19), 3701-3707. DOI: 10.1016/s0017-9310(99)00369-5

[21] Philip, J., & Shima, P. (2012). Thermal Properties of nanofluids. Advances in Colloid and Interface science, 30-45.

Creative Commons Licence
Mechanics, Materials Science & Engineering Journal by Magnolithe GmbH is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at