Synthesis of Bismuth Stannate Nanoparticles with High Photocatalytic Activity under the Visible Light Irradiation

<- Back to I. Materials Science Vol.9

Cite the paper

G. Gnanamoorthy, T. Dhanasekaran, A. Padmanaban, S. Praveen Kumar, S. Munusamy, A. Stephen, V.Narayanan (2017). Synthesis of Bismuth Stannate Nanoparticles with High Photocatalytic Activity under the Visible Light IrradiationMechanics, Materials Science & Engineering, Vol 9. doi:10.2412/mmse.13.41.415

Authors: G. Gnanamoorthy, T. Dhanasekaran, A. Padmanaban, S. Praveen Kumar, S. Munusamy, A. Stephen, V. Narayanan

ABSTRACT. Malachite Green is one of the most important organic dye, it contains triphenylmethane groups and it has been widely used for many industries. The hazardous dyes were rapidly act on immune and reproductive systems with carcinogenic effect of human health. Different methods were used for the hazardous removal in various industries, such as photocatalysis, biological treatment and adsorption process. The bismuth stannate nanoparticles have special properties of the hydrogen storage, biomolecule detection, gas sensors and catalysis. The bismuth stannate nanoparticles can be used for the degradation of organic pollutants and bismuth stannate is an important ternary oxide semiconductor with a wide band gap material. The composites were synthesized by a hydrothermal method, the obtained product was characterized by XRD, Raman, the morphology structure was confirmed by scanning electron microscopy and optical properties were carried out by DRS-UV-Vis spectroscopy. The excellent photocatalytic performance of the catalyst was evaluated by malachite green under the visible light.

Keywords: bismuth stannate, hydrothermal method, photocatalysis

DOI 10.2412/mmse.13.41.415

References

[1] J. Schneider, M. Matsuoka, Y. Horiuchi,   Chem. Rev. 114 (2014) 9919–9986.[ DOI: 10.1021/cr5001892]

[2] M.N. Chong, B. Jin, C.W. Chow, C. Saint, Water Res. 44 (2010) 2997–3027.[DOI: 10.1016/j.watres.2010.02.039]

[3] L. Moens, P. Ruiz and M. Devillers, Appl. Catal.A, 180 (1999). [DOI:10.1016/S0926-860X (98)00360-3]

[4] S. Park, H. Song, H. Choi and J. Moon, Solid State Ionics, 175, (2004) 625–629.[DOI: 10.1016/j.ssi.2004.01.078]

[5] Park, H. G.; Holt, J. K. Energy Environ.Sci. 3 (2010) 1028−1036. [DOI: 10.1039/B922057G]

[6] Kudo, A.; Miseki, Y. Chem. Soc. Rev. 38 (2009) 253−278.[ DOI:10.1039/B800489G]

[7] Y. Cong, J. Zhang, F. Chen, M. Anpo, J. Phys. Chem. C., 111 (2007) 10618–10623. [DOI:10.1021/jp0727493]

[8] A.K. Chandiran, P. Comte, R. Humphry-Baker, F. Kessler, C. Yi, M.K. Nazeeruddin, M. Gratzel, Adv. Funct. Mater., 23 (2013) 2775–2781. [DOI:10.1002/adfm.201202956]

[9] Y. Ao, J. Xu, P. Wang, C. Wang, J. Hou, Y. Li, Colloids Surf. A 487 (2015) 66–74.

[10] X.C. Ma, Y. Dai, L. Yu, B. Huang, Light 5 (2016) 16017. [DOI:10.1038/lsa.2016.17]

[11] Mahmoud Abudayyak, Merve Arici, Chemosphere 169 (2017) 117-123. [DOI:10.1016/j.chemosphere.2016.11.018]

[12] J.A. Switzer, M.G. Shumsky, E.W. Bohannan, Science 284 (1999) 293.[DOI: 10.1126/science.284.5412.293]

[13] B.J. Yang, M.S. Mo, H.M. Hu, C. Li, X.G. Yang, Eur. J. Inorg.   Chem. 9 (2004) 1785.[ DOI:10.1002/ejic.200300966]

[14] H. Maeda, N. Tomita, H. Kumakura, K. Togano, Y. Tanaka, Mater Chem. Phys. 40 (1995) 298. [DOI:10.1016/0254-0584 (95)01490-X]

[15] W.T. Dong, C.S. Zhu., J. Phys. Chem. Solids., 64 (2003) 265. [DOI:10.1016/S0022-3697 (02)00291-3]

[16] A. Cabot, A. Marsal, J. Arbiol, J.R. Morante, Sens. Actuators B 99 (2004) 74. [DOI:10.1016/j.snb.2003.10.032]

[17] O. Monnereau, L. Tortet, F. Rouquerol., Solid State Ionics 157 (2003) 163. [DOI:10.1016/S0167-2738 (02)00204-7]

https://mmse.xyz/Papers/vol-9-2017/ID201702271.pdf

Creative Commons Licence
Mechanics, Materials Science & Engineering Journal by Magnolithe GmbH is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at www.mmse.xyz.