The Role of Cellulose in the Formulation of Interconnected Macro and Micoporous Biocompatible Hydroxyapatite Scaffolds

<- Back to I. Materials Science Vol.9

Cite the paper

J. Anita Lett, M. Sundareswari, K. Ravichandran, Amirdha Sher Gill, J. Joyce Prabhkar (2017). The Role of Cellulose in the Formulation of Interconnected Macro and Micoporous Biocompatible Hydroxyapatite ScaffoldsMechanics, Materials Science & Engineering, Vol 9. doi:10.2412/mmse.62.43.650

Authors: J. Anita Lett, M. Sundareswari, K. Ravichandran, Amirdha Sher Gill, J. Joyce Prabhkar

ABSTRACT. In bone tissue engineering, ceramics are widely used as implant material to enhance bone growth formation or as drug release vehicle. In the existing work porous Hydroxyapatite scaffolds were prepared by polymeric replication method using Cellulose as a binding agent. The influence of binder on various sintering temperature were evaluated. The Hydroxyapatite scaffold sintered at 1150°C was characterized for phase purity, structural analysis and porosity measurements. Hence, it is possible to produce Hydroxyapatite scaffolds with highly inter connecting macro and micro pores with an apparent density of 0.944g/cm3 corresponding to 75% porosity.

Keywords: bone tissue engineering, pure hydroxyapatite scaffolds, cellulose, porosity

DOI 10.2412/mmse.62.43.650


[1] J.R. Woodard, A.J. Hilldore, S.K. Lan, C.J. Park, A.W. Morgan, J.A. Eurell, et al., ” The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity“, Biomaterials 28 (1) (Jan 2007) 45.

[2] L.D. Harris, B.S. Kim, D.J. Mooney, ” Open pore biodegradable matrices formed with gas foaming”, Journal of Biomedical Materials Research 42 (3) (Dec 5 1998) 396.

[3] L.A. Cyster, D.M. Grant, S.M. Howdle, F.R. Rose, D.J. Irvine, D. Freeman, et al., ” he influence of dispersant concentration on the pore morphology of hydroxyapatite ceramics for bone tissue engineering”, Biomaterials 26 (7) (Mar 2005) 697.

[4] Q. Fu, M.N. Rahaman, B.S. Bal, W. Huang, D.E. Day, ” Freeze Extrusion Fabrication of 13-93 Bioactive Glass Scaffolds for Bone Repair“, Journal of Biomedical Materials Research A 82 (1) (Jul 2007) 222.

[5] Sopyan, Porous hydroxyapatite for artificial bone applications, Science and Technology of Advanced Materials 8 (2007) 116–123,

[6] N. Monmaturapoj, Influence of preparation method on hydroxyapatite porous scaffolds, Bull. Mater. Sci., Vol. 34, No. 7, December 2011, pp. 1733–1737. I

[7] T.M. Chu, D.G. Orton, S.J. Hollister, S.E. Feinberg, J.W. Halloran, ”MecCalcium biomineralization in the radular teeth of the chiton, Acanthopleura hirtosahanical and in vivo performance of hydroxyapatite implants with controlled architectures“, Biomaterials 23 (5) (Mar2002) 1283.

[8] A. Tampieri, G. Celotti, S. Sprio, A. Delcogliano, S. Franzese, Biomaterials 22 (2001) 1365.

[9] J. Anita Lett, M. Sundareswari, K. Ravichandran, Porous hydroxyapatite scaffolds for orthopedic and dentalapplications – the role of binders, Materials Today: Proceedings 3 (2016) 1672–1677

[10] S.M. Zhang, F.Z. Cui, S.S. Liao, Y. Zhu, L. Han, ” Synthesis and biocompatibility of porous nano-hydroxyapatite/collagen/alginate composite”, Journal of Materials Science 14 (7) (Jul 2003) 641.

[11] S. Yunoki, T. Ikoma, A. Monkawa, E. Marukawa, S. Sotome, K. Shinomiya, et al., Journal of Biomaterials Science 18 (4) (2007) 393.

[12] P. Sepulveda, F.S. Ortega, M.D.M. Innocentini, V.C. Pandolfelli, Journal of the American Ceramic Society, ” Properties of Highly Porous Hydroxyapatite Obtained by the Gelcasting of Foams”, 83 (12) (Dec 2000) 3021.

[13] Gotz, H. E. et al. Effect of surface finish on the osseointegration of laser-treated titanium alloy implants. Biomaterials 25, 4057–4064 (2004).

[14] Hollister, S. J. et al. Engineering craniofacial scaffolds. Orthod. Craniofac. Res. 5, 162–173 (2005).

[15] Mehdi Kazemzadeh Narbat, Fariba Orang, Mehran Solati Hashtjin and Azadeh Goudarzi, “Fabrication of Porous Hydroxyapatite-Gelatin Composite Scaffolds for Bone Tissue Engineering”, Iranian Biomedical Journal 10 (4): 215-223 (October 2006)

[16]. C. Guzm´an V´azquez, C. Pi˜na Barba and N. Mungu´ıa, ; Revista Mexicana De Fi´Sica, ” Stoichiometric hydroxyapatite obtained by precipitation and sol gel processes”, Vol.51, No.3, pp. 284–293, 2005.

[17] T. Anee Kuriakose, S. Narayana Kalkuraa, M. Palanichamy, D. Arivuoli, Karsten Dierks, G. Bocelli, C. Betzel,, ” A novel low temperature sol–gel synthesis process for thermally stable nano crystalline hydroxyapatite, “Journal of Crystal Growth Vol.263, pp.517–523, 2004.

[18] Evans, L.A., Macey, D.J. and Webb, ” Calcium biomineralization in the radular teeth of the chiton, Acanthopleura hirtosa“, (1992), Calcif Tissue Int. 51: 78-82.

[19] Li, S., Izui, H., Okano, M. &Watanabe, T. The effects of sintering temperature andpressure on the sintering behavior of hydroxyapatite powder prepared by spark plasma sintering. J. Biomech. Eng. 3, 1–12 (2008).

[20] Khalil, K. A., Won Kim, S. & Kim, H. Y. Consolidation andmechanical properties of nanostructured hydroxyapatite- (ZrO2 1 3 mol% Y2O3) bioceramics by highfrequency induction heat sintering. Mat. Sci. Eng. A-Struct. 456, 368–372 (2007).

[21] Gu, Y.W., Loh, N. H., Khor, K. A., Tor, S. B. & Cheang, P. Spark plasma sintering of hydroxyapatite powders. Biomaterials 23, 37–43 (2002).

Creative Commons Licence
Mechanics, Materials Science & Engineering Journal by Magnolithe GmbH is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at