Thermal Conductivity of Zincblende Crystals

<- Back to I. Materials Science Vol. 1

Cite the paper

Amelia Carolina Sparavigna (2015). Thermal Conductivity of Zincblende Crystals. Mechanics, Materials Science & Engineering, Vol 1, pp. 28-35,  doi:10.13140/RG.2.1.1758.0565

Author: Amelia Carolina Sparavigna

ABSTRACT. Among materials having zincblende lattices, we find some that are characterized by a high thermal conductivity. This is a quite important  feature for their application in semiconductor technologies and related devices. In this paper, we will discuss the thermal conductivity of  two zincblende crystals (SiC and GaAs), stressing the role of lattice vibrations in producing high values of conductivity and of lattice defects in reducing it. In the framework of a model dealing with phonon dispersions and reliable scattering mechanisms, we will show how lattice thermal conductivity can be estimated from the Boltzmann Transport Equation in the case of any zincblende crystal.

Keywords: thermal conductivity, phonons, Boltzmann equation

DOI 10.13140/RG.2.1.1758.0565


[1] G.A. Slack, R.A. Tanzilli, R.O. Pohl and J.W. Vandersande (1987). The Intrinsic Thermal Conductivity of AlN. J. Phys. Chem. Solids, Volume 48,  Page 641.

[2] K. Watari and S.L. Shinde (2001). High Thermal Conductivity Materials. MRS Bulletin, Volume 26, Issue 6, Page 440.

[3] R. Maboudian, C. Carraro,  D.G.  Senesky and C.S.  Roper  (2013). Advances in Silicon Carbide Science and Technology at the Micro- and Nanoscales. Journal of Vacuum Science & Technology A, Volume 31, Issue 5, Page 050805.

[4] S.E. Saddow  (2012). Silicon Carbide Biotechnology: A Biocompatible Semiconductor for Advanced Biomedical Devices and Applications. Elsevier.

[5] Ming Ruan, Yike Hu, Zelei Guo, Rui Dong, J. Palmer, J. Hankinson, C. Berger and W.A. De Heer (2012). Epitaxial Graphene on Silicon Carbide: Introduction to Structured Graphene. MRS Bulletin, Volume 37, Issue 12, Page 1138.

[6] Insaco Inc, Quakertown Pennsylvania, 2015, materials/carbides/cvd-silicon-carbide

[7] Insaco Inc, materials/carbides/silicon-carbide-sintered

[8] A.C. Sparavigna (2012).  Measuring the Thermal Diffusivity in a Student Laboratory, Engineering,  Volume 4, Issue 5, Page 266.

[9] K.J. Kim, Y.W.  Kim, K.Y. Lim, T. Nishimura and E. Narimatsu (2015). Electrical  and Thermal Properties of SiC–AlN Ceramics Without Sintering Additives. Journal of the European Ceramic Society, Volume 35, Issue 10, Page 2715.

[10] Z. Su, J.A. Malen, J.P.  Freedman, R.F. Davis, J.H.  Leach and E.A. Preble (2013). Dependence of Thermal Conductivities of the AlN Film in the LED Architecture on Surface Roughness and Lattice Mismatch. ASME Paper No. HT2013-17116.

[11] A.C. Sparavigna (2014). Light-Emitting Diodes in the Solid-State Lighting Systems. International Journal of Sciences, Volume 3, Issue 11, Page 9.

[12] T.R. Anthony, W.F.  Banholzer, J.F. Fleischer, L. Wei, P.K. Kuo, R.L. Thomas  and R.W. Pryor  (1990).  Thermal Diffusivity of Isotopically Enriched 12C diamond.  Physical Review B,  Volume 42, Issue 2, Page 1104.

[13] T. Ruf, R. Henn, M. Asen-Palmer, E. Gmelin, M.Cardona, H.-J. Pohl, G.  Devyatych and P. Sennikov (2000).  Thermal Conductivity of Isotopically Enriched Silicon, Solid State Commun., Volume 115, Page 243.

[14] A. Sparavigna (2002). Influence of Isotope Scattering on the Thermal Conductivity of Diamond.  Physical  Review B, Volume  65, Issue 6, Page 064305.

[15] M. Asen-Palmer, K. Bartkowski, E. Gmelin, M. Cardona, A.P.  Zhernov, A.V.  Inyushkin, A.N. Taldenkov, V.I.  Ozhogin, K.M.  Itoh and E.E. Haller (1997).  Thermal Conductivity of Germanium Crystals with Different Isotopic Compositions. Physical Review B, Volume 56, Issue 15,  Page 9431.

[16] M. Omini and A. Sparavigna (1997).  Heat Transport in Dielectric Solids with Diamond Structure. Nuovo Cim. D, Volume 19, Issue 10, Page 1537.

[17] A. Sparavigna (2002).  Lattice Thermal Conductivity in Cubic Silicon Carbide.  Physical Review B,  Volume 66, Issue 17, Page 174301.

[18] R.S. Mulik and P.M. Pandey (2011). Ultrasonic Assisted Magnetic Abrasive Finishing of Hardened AISI 52100 Steel Using Unbonded SiC Abrasives. International Journal of Refractory Metals and Hard Materials, Volume 29, Issue 1, Page 68.

[19] H.Y. Xu, Q. Yang, X.L. Wang, X.Y. Liu, Y.L.  Zhao, C.Z. Li and H. Watanabe (2015). Improving Interface Quality of 4H-SiC MOS Devices with High Temperature Oxidation Process in Mass Produce Furnace. Materials Science Forum, Volume 821, Page 484.

[20] M. Gad-el-Hak (2005). MEMS: Design and Fabrication, CRC Press.

[21] Data available from D.W. Palmer,, 2014.

[22] R.S. Okojie, D. Lukco, V. Nguyen and E. Savrun (2015). 4H-SiC Piezoresistive Pressure Sensors at 800° C With Observed Sensitivity Recovery. Electron Device Letters, IEEE, Volume 36, Issue 2, Page 174.

[23] R.S. Okojie, R.D. Meredith, C.T. Chang and E. Savrun (2014). High Temperature Dynamic Pressure Measurements Using Silicon Carbide Pressure Sensors. IMAPS High Temperature Electron. Conf., Albuquerque, NM, USA, Page 47.

[24] T.T.H. Eng, S.C.  Kan and G.K.L. Wong (1995). Surface-Micromachined Epitaxial Silicon Cantilevers as Movable Optical Waveguides on Silicon-on-Insulator Substrates. Sensors and Actuators A, Volume 49, Issue 1, Page 109.

[25] M. Born and K. Huang (1954). Dynamical Theory of Crystal Lattices. Clarendon.

[26] Data available from

[27] D. Strauch and B. Dorner (1990). Phonon Dispersion in GaAs. Journal of Physics: Condensed Matter, Volume 2, Issue 6, Page 1457.

[28] D.W. Feldman, J.H. Parker Jr., W.J. Choyke, and Lyle Patrick (1968). Phonon Dispersion Curves by Raman Scattering in SiC, Polytypes 3C, 4H, 6H, 15R, and 21R. Phys. Rev., Volume 173, Page 787.

[29] J.M. Ziman (1960). Electrons and Phonons: the Theory of Transport Phenomena in Solids, Clarendon.

[30]  A.V. Inyushkin,  A.N.  Taldenkov, A.Yu. Yakubovsky, A.V. Markov, L. Moreno-Garsia and B.N. Sharonov (2003). Thermal Conductivity of Isotopically Enriched 71GaAs Crystal. Semiconductor science and technology, Volume 18, Issue 7, Page 685.

[31] B.C. Daly, H.J. Maris, K. Imamura and S. Tamura (2002). Molecular Dynamics Calculation of the Thermal Conductivity of Superlattices. Physical Review B, Volume 66, Issue 2, Page 024301.

[32] R.E. Taylor, H. Groot and  J. Ferrier (1993).  Thermophysical Properties of CVD SiC.  TRPL 1336, Thermophysical Properties Research Laboratory Report, School of Mechanical Enginnering, Purdue University, November 1993.

[33] D.J. Senor, G.E. Youngblood, C.E. Moore, D.J. Trimble, G.A. Newsome and J.J. Woods (1996). Effects of Neutron Irradiation on Thermal Conductivity of SiC-based Composites and Monolithic Ceramics.  Fusion Technology, Volume 30, Issue 3, Page 943.

[34] Ju Li,  L. Porter  and S. Yip (1998). Atomistic Modeling of Finite-Temperature Properties of Crystalline β-SiC: II. Thermal Conductivity and Effects of Point Defects. Journal of Nuclear Materials, Volume 255, Issue 2, Page 139.

[35] M. Rohde (1991). Reduction of the Thermal Conductivity of SiC by Radiation Damage. Journal of Nuclear Materials, Volume 182, Page 87.

[36] R.J. Price (1973).  Neutron Irradiation-Induced Voids in Beta Silicon Carbide.  Journal of Nuclear Materials, Volume 46, Issue 3, Page 268.

[37] A.C. Sparavigna and S. Galli (2012). L’equazione di Boltzmann per la conducibilità termica fononica nell’approssimazione dei tempi di rilassamento, Lulu Enterprises, Raleigh, NC.

Creative Commons Licence
Mechanics, Materials Science & Engineering Journal by Magnolithe GmbH is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at