Thickness Dependent Optical Properties of Sol-gel Based MgF2 – TiO2 Thin Films

<- Back to I. Materials Science Vol. 15

Read full-text

Cite the paper

Achar, Siddarth Krishnaraja; Madathil, Akhil Punneri; S., Naveen C; Gosh, Baijayanthi; Phani, A R

Thickness Dependent Optical Properties of Sol-gel based MgF2 – TiO2 Thin Films Journal Article

Mechanics, Materials Science & Engineering, 15 , 2018, ISSN: 2412-5954.

Abstract | Links | BibTeX

Authors: Siddarth Krishnaraja Achar, Akhil Punneri Madathil, Naveen C. S., Baijayanthi Gosh, A. R. Phani

ABSTRACT. MgF2 – TiO2 thin films were prepared by cost effective solgel technique onto glass substrates and optical parameters were determined by envelope technique. Thin films were characterized by optical transmission spectroscopy in the spectral range 290 – 1000 nm. The refractive index, extinction coefficient, Optical thickness and band gap dependency on thickness were evaluated. Thickness dependency of thin films showed direct allowed transition with band gap of 3.66 to 3.73 eV.

Keywords: envelope technique, thin films, optical parameters, sol-gel, band gap, dip-coating

DOI 10.2412/mmse.19.89.934

References

[1] Yang, H. H., Park, G. C. (2010), A Study on the properties of MgF2 Antireflection film for Solar Cells, Transactions on electrical and electronic materials, 11(1), 33-36. DOI 10.4313/TEEM.2010.11.1.033.

[2] Tsai, R. Y., Hua, M. Y., Wei, C. T., Ho, F. C. (1994), Characterizations of composite TiO2–MgF2 films prepared by reactive ion-assisted coevaporation, Opt. Eng., 33, 3411-3418, DOI 10.1117/12.179392.

[3] Hegmann, J., Löbmann, P. (2013), Sol–gel preparation of TiO2 and MgF2 multilayers, Journal of sol-gel science and technology, 67(3), 436-441, DOI 10.1007/s10971-013-3096-4.

[4] R. Swanepoel (1983), Determination of the thickness and optical constants of amorphous silicon, J. Phys. E: Sci. Instrum., 16, 1214, DOI 10.1088/0022-3735/16/12/023.

[5] Yim, C., O’Brien, M., McEvoy, N., Winters, S., Mirza, I., Lunney, J. G., Duesberg, G. S. (2014), Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry, Applied Physics Letters, 104(10), 103114, DOI 10.1063/1.4868108.

[6] Kar, M. (2010), Error minimization in the envelope method for the determination of optical constants of a thin film, Surface and Interface Analysis, 42(3), 145-150, DO: 10.1002/sia.3188.

[7] D. Poelman, P. F. Smet (2003), Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review, J. Phys. D: Appl. Phys., 36(15), 1850, DOI 10.1088/0022-3727/36/15/316.

[8] A. M. Nasr, A. M. Sadik (2001), Interferometric studies on thin photoactive polymer films, J. Opt. A: Pure Appl. Opt., 3(3), 200, DOI 10.1088/1464-4258/3/3/309.

[9] C. Caliendo, E. Verona, G. Saggio (1977), An integrated optical method for measuring the thickness and refractive index of birefringent thin films, Thin Solid Films, 292(1-2), 255-259, DOI 10.1016/S0040-6090(96)08997-3.

[10] Tauc, J., Grigorovici, R., Vancu, A. (1966), Optical properties and electronic structure of amorphous germanium, physica status solidi (b), 15(2), 627-637, DOI 10.1002/pssb.19660150224

[11] Poruba, A., Fejfar, A., Remeš, Z., Špringer, J., Vaněček, M., Kočka, J., Shah, A. (2000), Optical absorption and light scattering in microcrystalline silicon thin films and solar cells, Journal of Applied Physics, 88(1), 148-160, DOI 10.1063/1.373635.

[12] McNaught, A. D., McNaught, A. D. (1997), Compendium of chemical terminology (Vol. 1669), Oxford: Blackwell Science.

Creative Commons Licence
Mechanics, Materials Science & Engineering Journal by Magnolithe GmbH is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at www.mmse.xyz.